.TH "SRC/zlagtm.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlagtm.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlagtm\fP (trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)" .br .RI "\fBZLAGTM\fP performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlagtm (character trans, integer n, integer nrhs, double precision alpha, complex*16, dimension( * ) dl, complex*16, dimension( * ) d, complex*16, dimension( * ) du, complex*16, dimension( ldx, * ) x, integer ldx, double precision beta, complex*16, dimension( ldb, * ) b, integer ldb)" .PP \fBZLAGTM\fP performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLAGTM performs a matrix-matrix product of the form !> !> B := alpha * A * X + beta * B !> !> where A is a tridiagonal matrix of order N, B and X are N by NRHS !> matrices, and alpha and beta are real scalars, each of which may be !> 0\&., 1\&., or -1\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANS\fP .PP .nf !> TRANS is CHARACTER*1 !> Specifies the operation applied to A\&. !> = 'N': No transpose, B := alpha * A * X + beta * B !> = 'T': Transpose, B := alpha * A**T * X + beta * B !> = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrices X and B\&. !> .fi .PP .br \fIALPHA\fP .PP .nf !> ALPHA is DOUBLE PRECISION !> The scalar alpha\&. ALPHA must be 0\&., 1\&., or -1\&.; otherwise, !> it is assumed to be 0\&. !> .fi .PP .br \fIDL\fP .PP .nf !> DL is COMPLEX*16 array, dimension (N-1) !> The (n-1) sub-diagonal elements of T\&. !> .fi .PP .br \fID\fP .PP .nf !> D is COMPLEX*16 array, dimension (N) !> The diagonal elements of T\&. !> .fi .PP .br \fIDU\fP .PP .nf !> DU is COMPLEX*16 array, dimension (N-1) !> The (n-1) super-diagonal elements of T\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> The N by NRHS matrix X\&. !> .fi .PP .br \fILDX\fP .PP .nf !> LDX is INTEGER !> The leading dimension of the array X\&. LDX >= max(N,1)\&. !> .fi .PP .br \fIBETA\fP .PP .nf !> BETA is DOUBLE PRECISION !> The scalar beta\&. BETA must be 0\&., 1\&., or -1\&.; otherwise, !> it is assumed to be 1\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the N by NRHS matrix B\&. !> On exit, B is overwritten by the matrix expression !> B := alpha * A * X + beta * B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(N,1)\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB143\fP of file \fBzlagtm\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.