.TH "SRC/zlags2.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlags2.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlags2\fP (upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)" .br .RI "\fBZLAGS2\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlags2 (logical upper, double precision a1, complex*16 a2, double precision a3, double precision b1, complex*16 b2, double precision b3, double precision csu, complex*16 snu, double precision csv, complex*16 snv, double precision csq, complex*16 snq)" .PP \fBZLAGS2\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLAGS2 computes 2-by-2 unitary matrices U, V and Q, such !> that if ( UPPER ) then !> !> U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 ) !> ( 0 A3 ) ( x x ) !> and !> V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 ) !> ( 0 B3 ) ( x x ) !> !> or if ( \&.NOT\&.UPPER ) then !> !> U**H *A*Q = U**H *( A1 0 )*Q = ( x x ) !> ( A2 A3 ) ( 0 x ) !> and !> V**H *B*Q = V**H *( B1 0 )*Q = ( x x ) !> ( B2 B3 ) ( 0 x ) !> where !> !> U = ( CSU SNU ), V = ( CSV SNV ), !> ( -SNU**H CSU ) ( -SNV**H CSV ) !> !> Q = ( CSQ SNQ ) !> ( -SNQ**H CSQ ) !> !> The rows of the transformed A and B are parallel\&. Moreover, if the !> input 2-by-2 matrix A is not zero, then the transformed (1,1) entry !> of A is not zero\&. If the input matrices A and B are both not zero, !> then the transformed (2,2) element of B is not zero, except when the !> first rows of input A and B are parallel and the second rows are !> zero\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPPER\fP .PP .nf !> UPPER is LOGICAL !> = \&.TRUE\&.: the input matrices A and B are upper triangular\&. !> = \&.FALSE\&.: the input matrices A and B are lower triangular\&. !> .fi .PP .br \fIA1\fP .PP .nf !> A1 is DOUBLE PRECISION !> .fi .PP .br \fIA2\fP .PP .nf !> A2 is COMPLEX*16 !> .fi .PP .br \fIA3\fP .PP .nf !> A3 is DOUBLE PRECISION !> On entry, A1, A2 and A3 are elements of the input 2-by-2 !> upper (lower) triangular matrix A\&. !> .fi .PP .br \fIB1\fP .PP .nf !> B1 is DOUBLE PRECISION !> .fi .PP .br \fIB2\fP .PP .nf !> B2 is COMPLEX*16 !> .fi .PP .br \fIB3\fP .PP .nf !> B3 is DOUBLE PRECISION !> On entry, B1, B2 and B3 are elements of the input 2-by-2 !> upper (lower) triangular matrix B\&. !> .fi .PP .br \fICSU\fP .PP .nf !> CSU is DOUBLE PRECISION !> .fi .PP .br \fISNU\fP .PP .nf !> SNU is COMPLEX*16 !> The desired unitary matrix U\&. !> .fi .PP .br \fICSV\fP .PP .nf !> CSV is DOUBLE PRECISION !> .fi .PP .br \fISNV\fP .PP .nf !> SNV is COMPLEX*16 !> The desired unitary matrix V\&. !> .fi .PP .br \fICSQ\fP .PP .nf !> CSQ is DOUBLE PRECISION !> .fi .PP .br \fISNQ\fP .PP .nf !> SNQ is COMPLEX*16 !> The desired unitary matrix Q\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB156\fP of file \fBzlags2\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.