.TH "SRC/zlaev2.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlaev2.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlaev2\fP (a, b, c, rt1, rt2, cs1, sn1)" .br .RI "\fBZLAEV2\fP computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlaev2 (complex*16 a, complex*16 b, complex*16 c, double precision rt1, double precision rt2, double precision cs1, complex*16 sn1)" .PP \fBZLAEV2\fP computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix [ A B ] [ CONJG(B) C ]\&. On return, RT1 is the eigenvalue of larger absolute value, RT2 is the eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right eigenvector for RT1, giving the decomposition [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ] [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ]\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIA\fP .PP .nf A is COMPLEX*16 The (1,1) element of the 2-by-2 matrix\&. .fi .PP .br \fIB\fP .PP .nf B is COMPLEX*16 The (1,2) element and the conjugate of the (2,1) element of the 2-by-2 matrix\&. .fi .PP .br \fIC\fP .PP .nf C is COMPLEX*16 The (2,2) element of the 2-by-2 matrix\&. .fi .PP .br \fIRT1\fP .PP .nf RT1 is DOUBLE PRECISION The eigenvalue of larger absolute value\&. .fi .PP .br \fIRT2\fP .PP .nf RT2 is DOUBLE PRECISION The eigenvalue of smaller absolute value\&. .fi .PP .br \fICS1\fP .PP .nf CS1 is DOUBLE PRECISION .fi .PP .br \fISN1\fP .PP .nf SN1 is COMPLEX*16 The vector (CS1, SN1) is a unit right eigenvector for RT1\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf RT1 is accurate to a few ulps barring over/underflow\&. RT2 may be inaccurate if there is massive cancellation in the determinant A*C-B*B; higher precision or correctly rounded or correctly truncated arithmetic would be needed to compute RT2 accurately in all cases\&. CS1 and SN1 are accurate to a few ulps barring over/underflow\&. Overflow is possible only if RT1 is within a factor of 5 of overflow\&. Underflow is harmless if the input data is 0 or exceeds underflow_threshold / macheps\&. .fi .PP .RE .PP .PP Definition at line \fB120\fP of file \fBzlaev2\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.