.TH "SRC/zlaesy.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlaesy.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlaesy\fP (a, b, c, rt1, rt2, evscal, cs1, sn1)" .br .RI "\fBZLAESY\fP computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlaesy (complex*16 a, complex*16 b, complex*16 c, complex*16 rt1, complex*16 rt2, complex*16 evscal, complex*16 cs1, complex*16 sn1)" .PP \fBZLAESY\fP computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLAESY computes the eigendecomposition of a 2-by-2 symmetric matrix !> ( ( A, B );( B, C ) ) !> provided the norm of the matrix of eigenvectors is larger than !> some threshold value\&. !> !> RT1 is the eigenvalue of larger absolute value, and RT2 of !> smaller absolute value\&. If the eigenvectors are computed, then !> on return ( CS1, SN1 ) is the unit eigenvector for RT1, hence !> !> [ CS1 SN1 ] \&. [ A B ] \&. [ CS1 -SN1 ] = [ RT1 0 ] !> [ -SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ] !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIA\fP .PP .nf !> A is COMPLEX*16 !> The ( 1, 1 ) element of input matrix\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 !> The ( 1, 2 ) element of input matrix\&. The ( 2, 1 ) element !> is also given by B, since the 2-by-2 matrix is symmetric\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is COMPLEX*16 !> The ( 2, 2 ) element of input matrix\&. !> .fi .PP .br \fIRT1\fP .PP .nf !> RT1 is COMPLEX*16 !> The eigenvalue of larger modulus\&. !> .fi .PP .br \fIRT2\fP .PP .nf !> RT2 is COMPLEX*16 !> The eigenvalue of smaller modulus\&. !> .fi .PP .br \fIEVSCAL\fP .PP .nf !> EVSCAL is COMPLEX*16 !> The complex value by which the eigenvector matrix was scaled !> to make it orthonormal\&. If EVSCAL is zero, the eigenvectors !> were not computed\&. This means one of two things: the 2-by-2 !> matrix could not be diagonalized, or the norm of the matrix !> of eigenvectors before scaling was larger than the threshold !> value THRESH (set below)\&. !> .fi .PP .br \fICS1\fP .PP .nf !> CS1 is COMPLEX*16 !> .fi .PP .br \fISN1\fP .PP .nf !> SN1 is COMPLEX*16 !> If EVSCAL \&.NE\&. 0, ( CS1, SN1 ) is the unit right eigenvector !> for RT1\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB114\fP of file \fBzlaesy\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.