.TH "SRC/zlaein.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlaein.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlaein\fP (rightv, noinit, n, h, ldh, w, v, b, ldb, rwork, eps3, smlnum, info)" .br .RI "\fBZLAEIN\fP computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlaein (logical rightv, logical noinit, integer n, complex*16, dimension( ldh, * ) h, integer ldh, complex*16 w, complex*16, dimension( * ) v, complex*16, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) rwork, double precision eps3, double precision smlnum, integer info)" .PP \fBZLAEIN\fP computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLAEIN uses inverse iteration to find a right or left eigenvector corresponding to the eigenvalue W of a complex upper Hessenberg matrix H\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIRIGHTV\fP .PP .nf RIGHTV is LOGICAL = \&.TRUE\&. : compute right eigenvector; = \&.FALSE\&.: compute left eigenvector\&. .fi .PP .br \fINOINIT\fP .PP .nf NOINIT is LOGICAL = \&.TRUE\&. : no initial vector supplied in V = \&.FALSE\&.: initial vector supplied in V\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix H\&. N >= 0\&. .fi .PP .br \fIH\fP .PP .nf H is COMPLEX*16 array, dimension (LDH,N) The upper Hessenberg matrix H\&. .fi .PP .br \fILDH\fP .PP .nf LDH is INTEGER The leading dimension of the array H\&. LDH >= max(1,N)\&. .fi .PP .br \fIW\fP .PP .nf W is COMPLEX*16 The eigenvalue of H whose corresponding right or left eigenvector is to be computed\&. .fi .PP .br \fIV\fP .PP .nf V is COMPLEX*16 array, dimension (N) On entry, if NOINIT = \&.FALSE\&., V must contain a starting vector for inverse iteration; otherwise V need not be set\&. On exit, V contains the computed eigenvector, normalized so that the component of largest magnitude has magnitude 1; here the magnitude of a complex number (x,y) is taken to be |x| + |y|\&. .fi .PP .br \fIB\fP .PP .nf B is COMPLEX*16 array, dimension (LDB,N) .fi .PP .br \fILDB\fP .PP .nf LDB is INTEGER The leading dimension of the array B\&. LDB >= max(1,N)\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is DOUBLE PRECISION array, dimension (N) .fi .PP .br \fIEPS3\fP .PP .nf EPS3 is DOUBLE PRECISION A small machine-dependent value which is used to perturb close eigenvalues, and to replace zero pivots\&. .fi .PP .br \fISMLNUM\fP .PP .nf SMLNUM is DOUBLE PRECISION A machine-dependent value close to the underflow threshold\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit = 1: inverse iteration did not converge; V is set to the last iterate\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB147\fP of file \fBzlaein\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.