.TH "SRC/zlaed8.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlaed8.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlaed8\fP (k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlambda, q2, ldq2, w, indxp, indx, indxq, perm, givptr, givcol, givnum, info)" .br .RI "\fBZLAED8\fP used by ZSTEDC\&. Merges eigenvalues and deflates secular equation\&. Used when the original matrix is dense\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlaed8 (integer k, integer n, integer qsiz, complex*16, dimension( ldq, * ) q, integer ldq, double precision, dimension( * ) d, double precision rho, integer cutpnt, double precision, dimension( * ) z, double precision, dimension( * ) dlambda, complex*16, dimension( ldq2, * ) q2, integer ldq2, double precision, dimension( * ) w, integer, dimension( * ) indxp, integer, dimension( * ) indx, integer, dimension( * ) indxq, integer, dimension( * ) perm, integer givptr, integer, dimension( 2, * ) givcol, double precision, dimension( 2, * ) givnum, integer info)" .PP \fBZLAED8\fP used by ZSTEDC\&. Merges eigenvalues and deflates secular equation\&. Used when the original matrix is dense\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLAED8 merges the two sets of eigenvalues together into a single !> sorted set\&. Then it tries to deflate the size of the problem\&. !> There are two ways in which deflation can occur: when two or more !> eigenvalues are close together or if there is a tiny element in the !> Z vector\&. For each such occurrence the order of the related secular !> equation problem is reduced by one\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIK\fP .PP .nf !> K is INTEGER !> Contains the number of non-deflated eigenvalues\&. !> This is the order of the related secular equation\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The dimension of the symmetric tridiagonal matrix\&. N >= 0\&. !> .fi .PP .br \fIQSIZ\fP .PP .nf !> QSIZ is INTEGER !> The dimension of the unitary matrix used to reduce !> the dense or band matrix to tridiagonal form\&. !> QSIZ >= N if ICOMPQ = 1\&. !> .fi .PP .br \fIQ\fP .PP .nf !> Q is COMPLEX*16 array, dimension (LDQ,N) !> On entry, Q contains the eigenvectors of the partially solved !> system which has been previously updated in matrix !> multiplies with other partially solved eigensystems\&. !> On exit, Q contains the trailing (N-K) updated eigenvectors !> (those which were deflated) in its last N-K columns\&. !> .fi .PP .br \fILDQ\fP .PP .nf !> LDQ is INTEGER !> The leading dimension of the array Q\&. LDQ >= max( 1, N )\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (N) !> On entry, D contains the eigenvalues of the two submatrices to !> be combined\&. On exit, D contains the trailing (N-K) updated !> eigenvalues (those which were deflated) sorted into increasing !> order\&. !> .fi .PP .br \fIRHO\fP .PP .nf !> RHO is DOUBLE PRECISION !> Contains the off diagonal element associated with the rank-1 !> cut which originally split the two submatrices which are now !> being recombined\&. RHO is modified during the computation to !> the value required by DLAED3\&. !> .fi .PP .br \fICUTPNT\fP .PP .nf !> CUTPNT is INTEGER !> Contains the location of the last eigenvalue in the leading !> sub-matrix\&. MIN(1,N) <= CUTPNT <= N\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is DOUBLE PRECISION array, dimension (N) !> On input this vector contains the updating vector (the last !> row of the first sub-eigenvector matrix and the first row of !> the second sub-eigenvector matrix)\&. The contents of Z are !> destroyed during the updating process\&. !> .fi .PP .br \fIDLAMBDA\fP .PP .nf !> DLAMBDA is DOUBLE PRECISION array, dimension (N) !> Contains a copy of the first K eigenvalues which will be used !> by DLAED3 to form the secular equation\&. !> .fi .PP .br \fIQ2\fP .PP .nf !> Q2 is COMPLEX*16 array, dimension (LDQ2,N) !> If ICOMPQ = 0, Q2 is not referenced\&. Otherwise, !> Contains a copy of the first K eigenvectors which will be used !> by DLAED7 in a matrix multiply (DGEMM) to update the new !> eigenvectors\&. !> .fi .PP .br \fILDQ2\fP .PP .nf !> LDQ2 is INTEGER !> The leading dimension of the array Q2\&. LDQ2 >= max( 1, N )\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is DOUBLE PRECISION array, dimension (N) !> This will hold the first k values of the final !> deflation-altered z-vector and will be passed to DLAED3\&. !> .fi .PP .br \fIINDXP\fP .PP .nf !> INDXP is INTEGER array, dimension (N) !> This will contain the permutation used to place deflated !> values of D at the end of the array\&. On output INDXP(1:K) !> points to the nondeflated D-values and INDXP(K+1:N) !> points to the deflated eigenvalues\&. !> .fi .PP .br \fIINDX\fP .PP .nf !> INDX is INTEGER array, dimension (N) !> This will contain the permutation used to sort the contents of !> D into ascending order\&. !> .fi .PP .br \fIINDXQ\fP .PP .nf !> INDXQ is INTEGER array, dimension (N) !> This contains the permutation which separately sorts the two !> sub-problems in D into ascending order\&. Note that elements in !> the second half of this permutation must first have CUTPNT !> added to their values in order to be accurate\&. !> .fi .PP .br \fIPERM\fP .PP .nf !> PERM is INTEGER array, dimension (N) !> Contains the permutations (from deflation and sorting) to be !> applied to each eigenblock\&. !> .fi .PP .br \fIGIVPTR\fP .PP .nf !> GIVPTR is INTEGER !> Contains the number of Givens rotations which took place in !> this subproblem\&. !> .fi .PP .br \fIGIVCOL\fP .PP .nf !> GIVCOL is INTEGER array, dimension (2, N) !> Each pair of numbers indicates a pair of columns to take place !> in a Givens rotation\&. !> .fi .PP .br \fIGIVNUM\fP .PP .nf !> GIVNUM is DOUBLE PRECISION array, dimension (2, N) !> Each number indicates the S value to be used in the !> corresponding Givens rotation\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB225\fP of file \fBzlaed8\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.