.TH "SRC/zlaed0.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlaed0.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlaed0\fP (qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info)" .br .RI "\fBZLAED0\fP used by ZSTEDC\&. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlaed0 (integer qsiz, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e, complex*16, dimension( ldq, * ) q, integer ldq, complex*16, dimension( ldqs, * ) qstore, integer ldqs, double precision, dimension( * ) rwork, integer, dimension( * ) iwork, integer info)" .PP \fBZLAED0\fP used by ZSTEDC\&. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method\&. .PP \fBPurpose:\fP .RS 4 .PP .nf Using the divide and conquer method, ZLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIQSIZ\fP .PP .nf QSIZ is INTEGER The dimension of the unitary matrix used to reduce the full matrix to tridiagonal form\&. QSIZ >= N if ICOMPQ = 1\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The dimension of the symmetric tridiagonal matrix\&. N >= 0\&. .fi .PP .br \fID\fP .PP .nf D is DOUBLE PRECISION array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix\&. On exit, the eigenvalues in ascending order\&. .fi .PP .br \fIE\fP .PP .nf E is DOUBLE PRECISION array, dimension (N-1) On entry, the off-diagonal elements of the tridiagonal matrix\&. On exit, E has been destroyed\&. .fi .PP .br \fIQ\fP .PP .nf Q is COMPLEX*16 array, dimension (LDQ,N) On entry, Q must contain an QSIZ x N matrix whose columns unitarily orthonormal\&. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix\&. .fi .PP .br \fILDQ\fP .PP .nf LDQ is INTEGER The leading dimension of the array Q\&. LDQ >= max(1,N)\&. .fi .PP .br \fIIWORK\fP .PP .nf IWORK is INTEGER array, the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N ( lg( N ) = smallest integer k such that 2^k >= N ) .fi .PP .br \fIRWORK\fP .PP .nf RWORK is DOUBLE PRECISION array, dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N ) = smallest integer k such that 2^k >= N ) .fi .PP .br \fIQSTORE\fP .PP .nf QSTORE is COMPLEX*16 array, dimension (LDQS, N) Used to store parts of the eigenvector matrix when the updating matrix multiplies take place\&. .fi .PP .br \fILDQS\fP .PP .nf LDQS is INTEGER The leading dimension of the array QSTORE\&. LDQS >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. > 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1)\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB143\fP of file \fBzlaed0\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.