SRC/zlaed0.f(3) Library Functions Manual SRC/zlaed0.f(3)

SRC/zlaed0.f


subroutine zlaed0 (qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info)
ZLAED0 used by ZSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.

ZLAED0 used by ZSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.

Purpose:

!>
!> Using the divide and conquer method, ZLAED0 computes all eigenvalues
!> of a symmetric tridiagonal matrix which is one diagonal block of
!> those from reducing a dense or band Hermitian matrix and
!> corresponding eigenvectors of the dense or band matrix.
!> 

Parameters

QSIZ
!>          QSIZ is INTEGER
!>         The dimension of the unitary matrix used to reduce
!>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
!> 

N

!>          N is INTEGER
!>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
!> 

D

!>          D is DOUBLE PRECISION array, dimension (N)
!>         On entry, the diagonal elements of the tridiagonal matrix.
!>         On exit, the eigenvalues in ascending order.
!> 

E

!>          E is DOUBLE PRECISION array, dimension (N-1)
!>         On entry, the off-diagonal elements of the tridiagonal matrix.
!>         On exit, E has been destroyed.
!> 

Q

!>          Q is COMPLEX*16 array, dimension (LDQ,N)
!>         On entry, Q must contain an QSIZ x N matrix whose columns
!>         unitarily orthonormal. It is a part of the unitary matrix
!>         that reduces the full dense Hermitian matrix to a
!>         (reducible) symmetric tridiagonal matrix.
!> 

LDQ

!>          LDQ is INTEGER
!>         The leading dimension of the array Q.  LDQ >= max(1,N).
!> 

IWORK

!>          IWORK is INTEGER array,
!>         the dimension of IWORK must be at least
!>                      6 + 6*N + 5*N*lg N
!>                      ( lg( N ) = smallest integer k
!>                                  such that 2^k >= N )
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array,
!>                               dimension (1 + 3*N + 2*N*lg N + 3*N**2)
!>                        ( lg( N ) = smallest integer k
!>                                    such that 2^k >= N )
!> 

QSTORE

!>          QSTORE is COMPLEX*16 array, dimension (LDQS, N)
!>         Used to store parts of
!>         the eigenvector matrix when the updating matrix multiplies
!>         take place.
!> 

LDQS

!>          LDQS is INTEGER
!>         The leading dimension of the array QSTORE.
!>         LDQS >= max(1,N).
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  The algorithm failed to compute an eigenvalue while
!>                working on the submatrix lying in rows and columns
!>                INFO/(N+1) through mod(INFO,N+1).
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 143 of file zlaed0.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK