.TH "SRC/zla_syamv.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zla_syamv.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzla_syamv\fP (uplo, n, alpha, a, lda, x, incx, beta, y, incy)" .br .RI "\fBZLA_SYAMV\fP computes a matrix-vector product using a symmetric indefinite matrix to calculate error bounds\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zla_syamv (integer uplo, integer n, double precision alpha, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) x, integer incx, double precision beta, double precision, dimension( * ) y, integer incy)" .PP \fBZLA_SYAMV\fP computes a matrix-vector product using a symmetric indefinite matrix to calculate error bounds\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLA_SYAMV performs the matrix-vector operation y := alpha*abs(A)*abs(x) + beta*abs(y), where alpha and beta are scalars, x and y are vectors and A is an n by n symmetric matrix\&. This function is primarily used in calculating error bounds\&. To protect against underflow during evaluation, components in the resulting vector are perturbed away from zero by (N+1) times the underflow threshold\&. To prevent unnecessarily large errors for block-structure embedded in general matrices, 'symbolically' zero components are not perturbed\&. A zero entry is considered 'symbolic' if all multiplications involved in computing that entry have at least one zero multiplicand\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is INTEGER On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = BLAS_UPPER Only the upper triangular part of A is to be referenced\&. UPLO = BLAS_LOWER Only the lower triangular part of A is to be referenced\&. Unchanged on exit\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER On entry, N specifies the number of columns of the matrix A\&. N must be at least zero\&. Unchanged on exit\&. .fi .PP .br \fIALPHA\fP .PP .nf ALPHA is DOUBLE PRECISION \&. On entry, ALPHA specifies the scalar alpha\&. Unchanged on exit\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension ( LDA, n )\&. Before entry, the leading m by n part of the array A must contain the matrix of coefficients\&. Unchanged on exit\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program\&. LDA must be at least max( 1, n )\&. Unchanged on exit\&. .fi .PP .br \fIX\fP .PP .nf X is COMPLEX*16 array, dimension at least ( 1 + ( n - 1 )*abs( INCX ) ) Before entry, the incremented array X must contain the vector x\&. Unchanged on exit\&. .fi .PP .br \fIINCX\fP .PP .nf INCX is INTEGER On entry, INCX specifies the increment for the elements of X\&. INCX must not be zero\&. Unchanged on exit\&. .fi .PP .br \fIBETA\fP .PP .nf BETA is DOUBLE PRECISION \&. On entry, BETA specifies the scalar beta\&. When BETA is supplied as zero then Y need not be set on input\&. Unchanged on exit\&. .fi .PP .br \fIY\fP .PP .nf Y is DOUBLE PRECISION array, dimension ( 1 + ( n - 1 )*abs( INCY ) ) Before entry with BETA non-zero, the incremented array Y must contain the vector y\&. On exit, Y is overwritten by the updated vector y\&. .fi .PP .br \fIINCY\fP .PP .nf INCY is INTEGER On entry, INCY specifies the increment for the elements of Y\&. INCY must not be zero\&. Unchanged on exit\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf Level 2 Blas routine\&. -- Written on 22-October-1986\&. Jack Dongarra, Argonne National Lab\&. Jeremy Du Croz, Nag Central Office\&. Sven Hammarling, Nag Central Office\&. Richard Hanson, Sandia National Labs\&. -- Modified for the absolute-value product, April 2006 Jason Riedy, UC Berkeley .fi .PP .RE .PP .PP Definition at line \fB177\fP of file \fBzla_syamv\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.