SRC/zla_hercond_x.f(3) Library Functions Manual SRC/zla_hercond_x.f(3) NAME SRC/zla_hercond_x.f SYNOPSIS Functions/Subroutines double precision function zla_hercond_x (uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork) ZLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices. Function/Subroutine Documentation double precision function zla_hercond_x (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex*16, dimension( * ) x, integer info, complex*16, dimension( * ) work, double precision, dimension( * ) rwork) ZLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices. Purpose: !> !> ZLA_HERCOND_X computes the infinity norm condition number of !> op(A) * diag(X) where X is a COMPLEX*16 vector. !> Parameters UPLO !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> N !> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !> A !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> AF !> AF is COMPLEX*16 array, dimension (LDAF,N) !> The block diagonal matrix D and the multipliers used to !> obtain the factor U or L as computed by ZHETRF. !> LDAF !> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !> IPIV !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by CHETRF. !> X !> X is COMPLEX*16 array, dimension (N) !> The vector X in the formula op(A) * diag(X). !> INFO !> INFO is INTEGER !> = 0: Successful exit. !> i > 0: The ith argument is invalid. !> WORK !> WORK is COMPLEX*16 array, dimension (2*N). !> Workspace. !> RWORK !> RWORK is DOUBLE PRECISION array, dimension (N). !> Workspace. !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 130 of file zla_hercond_x.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/zla_hercond_x.f(3)