SRC/zla_gerpvgrw.f(3) Library Functions Manual SRC/zla_gerpvgrw.f(3) NAME SRC/zla_gerpvgrw.f SYNOPSIS Functions/Subroutines double precision function zla_gerpvgrw (n, ncols, a, lda, af, ldaf) ZLA_GERPVGRW multiplies a square real matrix by a complex matrix. Function/Subroutine Documentation double precision function zla_gerpvgrw (integer n, integer ncols, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf) ZLA_GERPVGRW multiplies a square real matrix by a complex matrix. Purpose: !> !> !> ZLA_GERPVGRW computes the reciprocal pivot growth factor !> norm(A)/norm(U). The norm is used. If this is !> much less than 1, the stability of the LU factorization of the !> (equilibrated) matrix A could be poor. This also means that the !> solution X, estimated condition numbers, and error bounds could be !> unreliable. !> Parameters N !> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !> NCOLS !> NCOLS is INTEGER !> The number of columns of the matrix A. NCOLS >= 0. !> A !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the N-by-N matrix A. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> AF !> AF is COMPLEX*16 array, dimension (LDAF,N) !> The factors L and U from the factorization !> A = P*L*U as computed by ZGETRF. !> LDAF !> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 98 of file zla_gerpvgrw.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/zla_gerpvgrw.f(3)