TESTING/EIG/zhst01.f(3) Library Functions Manual TESTING/EIG/zhst01.f(3)

TESTING/EIG/zhst01.f


subroutine zhst01 (n, ilo, ihi, a, lda, h, ldh, q, ldq, work, lwork, rwork, result)
ZHST01

ZHST01

Purpose:

!>
!> ZHST01 tests the reduction of a general matrix A to upper Hessenberg
!> form:  A = Q*H*Q'.  Two test ratios are computed;
!>
!> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
!> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
!>
!> The matrix Q is assumed to be given explicitly as it would be
!> following ZGEHRD + ZUNGHR.
!>
!> In this version, ILO and IHI are not used, but they could be used
!> to save some work if this is desired.
!> 

Parameters

N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 

ILO

!>          ILO is INTEGER
!> 

IHI

!>          IHI is INTEGER
!>
!>          A is assumed to be upper triangular in rows and columns
!>          1:ILO-1 and IHI+1:N, so Q differs from the identity only in
!>          rows and columns ILO+1:IHI.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          The original n by n matrix A.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 

H

!>          H is COMPLEX*16 array, dimension (LDH,N)
!>          The upper Hessenberg matrix H from the reduction A = Q*H*Q'
!>          as computed by ZGEHRD.  H is assumed to be zero below the
!>          first subdiagonal.
!> 

LDH

!>          LDH is INTEGER
!>          The leading dimension of the array H.  LDH >= max(1,N).
!> 

Q

!>          Q is COMPLEX*16 array, dimension (LDQ,N)
!>          The orthogonal matrix Q from the reduction A = Q*H*Q' as
!>          computed by ZGEHRD + ZUNGHR.
!> 

LDQ

!>          LDQ is INTEGER
!>          The leading dimension of the array Q.  LDQ >= max(1,N).
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (LWORK)
!> 

LWORK

!>          LWORK is INTEGER
!>          The length of the array WORK.  LWORK >= 2*N*N.
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array, dimension (N)
!> 

RESULT

!>          RESULT is DOUBLE PRECISION array, dimension (2)
!>          RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
!>          RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 138 of file zhst01.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK