.TH "SRC/zhptrd.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zhptrd.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzhptrd\fP (uplo, n, ap, d, e, tau, info)" .br .RI "\fBZHPTRD\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zhptrd (character uplo, integer n, complex*16, dimension( * ) ap, double precision, dimension( * ) d, double precision, dimension( * ) e, complex*16, dimension( * ) tau, integer info)" .PP \fBZHPTRD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZHPTRD reduces a complex Hermitian matrix A stored in packed form to !> real symmetric tridiagonal form T by a unitary similarity !> transformation: Q**H * A * Q = T\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the Hermitian matrix !> A, packed columnwise in a linear array\&. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n\&. !> On exit, if UPLO = 'U', the diagonal and first superdiagonal !> of A are overwritten by the corresponding elements of the !> tridiagonal matrix T, and the elements above the first !> superdiagonal, with the array TAU, represent the unitary !> matrix Q as a product of elementary reflectors; if UPLO !> = 'L', the diagonal and first subdiagonal of A are over- !> written by the corresponding elements of the tridiagonal !> matrix T, and the elements below the first subdiagonal, with !> the array TAU, represent the unitary matrix Q as a product !> of elementary reflectors\&. See Further Details\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (N) !> The diagonal elements of the tridiagonal matrix T: !> D(i) = A(i,i)\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is DOUBLE PRECISION array, dimension (N-1) !> The off-diagonal elements of the tridiagonal matrix T: !> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is COMPLEX*16 array, dimension (N-1) !> The scalar factors of the elementary reflectors (see Further !> Details)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> If UPLO = 'U', the matrix Q is represented as a product of elementary !> reflectors !> !> Q = H(n-1) \&. \&. \&. H(2) H(1)\&. !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP, !> overwriting A(1:i-1,i+1), and tau is stored in TAU(i)\&. !> !> If UPLO = 'L', the matrix Q is represented as a product of elementary !> reflectors !> !> Q = H(1) H(2) \&. \&. \&. H(n-1)\&. !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP, !> overwriting A(i+2:n,i), and tau is stored in TAU(i)\&. !> .fi .PP .RE .PP .PP Definition at line \fB150\fP of file \fBzhptrd\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.