.TH "TESTING/EIG/zhpt21.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/zhpt21.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzhpt21\fP (itype, uplo, n, kband, ap, d, e, u, ldu, vp, tau, work, rwork, result)" .br .RI "\fBZHPT21\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zhpt21 (integer itype, character uplo, integer n, integer kband, complex*16, dimension( * ) ap, double precision, dimension( * ) d, double precision, dimension( * ) e, complex*16, dimension( ldu, * ) u, integer ldu, complex*16, dimension( * ) vp, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, double precision, dimension( 2 ) result)" .PP \fBZHPT21\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZHPT21 generally checks a decomposition of the form !> !> A = U S U**H !> !> where **H means conjugate transpose, A is hermitian, U is !> unitary, and S is diagonal (if KBAND=0) or (real) symmetric !> tridiagonal (if KBAND=1)\&. If ITYPE=1, then U is represented as !> a dense matrix, otherwise the U is expressed as a product of !> Householder transformations, whose vectors are stored in the !> array and whose scaling constants are in we shall !> use the letter to refer to the product of Householder !> transformations (which should be equal to U)\&. !> !> Specifically, if ITYPE=1, then: !> !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !> !> If ITYPE=2, then: !> !> RESULT(1) = | A - V S V**H | / ( |A| n ulp ) !> !> If ITYPE=3, then: !> !> RESULT(1) = | I - U V**H | / ( n ulp ) !> !> Packed storage means that, for example, if UPLO='U', then the columns !> of the upper triangle of A are stored one after another, so that !> A(1,j+1) immediately follows A(j,j) in the array AP\&. Similarly, if !> UPLO='L', then the columns of the lower triangle of A are stored one !> after another in AP, so that A(j+1,j+1) immediately follows A(n,j) !> in the array AP\&. This means that A(i,j) is stored in: !> !> AP( i + j*(j-1)/2 ) if UPLO='U' !> !> AP( i + (2*n-j)*(j-1)/2 ) if UPLO='L' !> !> The array VP bears the same relation to the matrix V that A does to !> AP\&. !> !> For ITYPE > 1, the transformation U is expressed as a product !> of Householder transformations: !> !> If UPLO='U', then V = H(n-1)\&.\&.\&.H(1), where !> !> H(j) = I - tau(j) v(j) v(j)**H !> !> and the first j-1 elements of v(j) are stored in V(1:j-1,j+1), !> (i\&.e\&., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ), !> the j-th element is 1, and the last n-j elements are 0\&. !> !> If UPLO='L', then V = H(1)\&.\&.\&.H(n-1), where !> !> H(j) = I - tau(j) v(j) v(j)**H !> !> and the first j elements of v(j) are 0, the (j+1)-st is 1, and the !> (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i\&.e\&., !> in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) \&.) !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIITYPE\fP .PP .nf !> ITYPE is INTEGER !> Specifies the type of tests to be performed\&. !> 1: U expressed as a dense unitary matrix: !> RESULT(1) = | A - U S U**H | / ( |A| n ulp ) and !> RESULT(2) = | I - U U**H | / ( n ulp ) !> !> 2: U expressed as a product V of Housholder transformations: !> RESULT(1) = | A - V S V**H | / ( |A| n ulp ) !> !> 3: U expressed both as a dense unitary matrix and !> as a product of Housholder transformations: !> RESULT(1) = | I - U V**H | / ( n ulp ) !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER !> If UPLO='U', the upper triangle of A and V will be used and !> the (strictly) lower triangle will not be referenced\&. !> If UPLO='L', the lower triangle of A and V will be used and !> the (strictly) upper triangle will not be referenced\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The size of the matrix\&. If it is zero, ZHPT21 does nothing\&. !> It must be at least zero\&. !> .fi .PP .br \fIKBAND\fP .PP .nf !> KBAND is INTEGER !> The bandwidth of the matrix\&. It may only be zero or one\&. !> If zero, then S is diagonal, and E is not referenced\&. If !> one, then S is symmetric tri-diagonal\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The original (unfactored) matrix\&. It is assumed to be !> hermitian, and contains the columns of just the upper !> triangle (UPLO='U') or only the lower triangle (UPLO='L'), !> packed one after another\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (N) !> The diagonal of the (symmetric tri-) diagonal matrix\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is DOUBLE PRECISION array, dimension (N) !> The off-diagonal of the (symmetric tri-) diagonal matrix\&. !> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and !> (3,2) element, etc\&. !> Not referenced if KBAND=0\&. !> .fi .PP .br \fIU\fP .PP .nf !> U is COMPLEX*16 array, dimension (LDU, N) !> If ITYPE=1 or 3, this contains the unitary matrix in !> the decomposition, expressed as a dense matrix\&. If ITYPE=2, !> then it is not referenced\&. !> .fi .PP .br \fILDU\fP .PP .nf !> LDU is INTEGER !> The leading dimension of U\&. LDU must be at least N and !> at least 1\&. !> .fi .PP .br \fIVP\fP .PP .nf !> VP is DOUBLE PRECISION array, dimension (N*(N+1)/2) !> If ITYPE=2 or 3, the columns of this array contain the !> Householder vectors used to describe the unitary matrix !> in the decomposition, as described in purpose\&. !> *NOTE* If ITYPE=2 or 3, V is modified and restored\&. The !> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') !> is set to one, and later reset to its original value, during !> the course of the calculation\&. !> If ITYPE=1, then it is neither referenced nor modified\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is COMPLEX*16 array, dimension (N) !> If ITYPE >= 2, then TAU(j) is the scalar factor of !> v(j) v(j)**H in the Householder transformation H(j) of !> the product U = H(1)\&.\&.\&.H(n-2) !> If ITYPE < 2, then TAU is not referenced\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (N**2) !> Workspace\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (N) !> Workspace\&. !> .fi .PP .br \fIRESULT\fP .PP .nf !> RESULT is DOUBLE PRECISION array, dimension (2) !> The values computed by the two tests described above\&. The !> values are currently limited to 1/ulp, to avoid overflow\&. !> RESULT(1) is always modified\&. RESULT(2) is modified only !> if ITYPE=1\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB226\fP of file \fBzhpt21\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.