TESTING/LIN/zhpt01.f(3) Library Functions Manual TESTING/LIN/zhpt01.f(3) NAME TESTING/LIN/zhpt01.f SYNOPSIS Functions/Subroutines subroutine zhpt01 (uplo, n, a, afac, ipiv, c, ldc, rwork, resid) ZHPT01 Function/Subroutine Documentation subroutine zhpt01 (character uplo, integer n, complex*16, dimension( * ) a, complex*16, dimension( * ) afac, integer, dimension( * ) ipiv, complex*16, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) rwork, double precision resid) ZHPT01 Purpose: !> !> ZHPT01 reconstructs a Hermitian indefinite packed matrix A from its !> block L*D*L' or U*D*U' factorization and computes the residual !> norm( C - A ) / ( N * norm(A) * EPS ), !> where C is the reconstructed matrix, EPS is the machine epsilon, !> L' is the conjugate transpose of L, and U' is the conjugate transpose !> of U. !> Parameters UPLO !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !> N !> N is INTEGER !> The number of rows and columns of the matrix A. N >= 0. !> A !> A is COMPLEX*16 array, dimension (N*(N+1)/2) !> The original Hermitian matrix A, stored as a packed !> triangular matrix. !> AFAC !> AFAC is COMPLEX*16 array, dimension (N*(N+1)/2) !> The factored form of the matrix A, stored as a packed !> triangular matrix. AFAC contains the block diagonal matrix D !> and the multipliers used to obtain the factor L or U from the !> block L*D*L' or U*D*U' factorization as computed by ZHPTRF. !> IPIV !> IPIV is INTEGER array, dimension (N) !> The pivot indices from ZHPTRF. !> C !> C is COMPLEX*16 array, dimension (LDC,N) !> LDC !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,N). !> RWORK !> RWORK is DOUBLE PRECISION array, dimension (N) !> RESID !> RESID is DOUBLE PRECISION !> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) !> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 112 of file zhpt01.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 TESTING/LIN/zhpt01.f(3)