.TH "SRC/zhetrs_3.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zhetrs_3.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzhetrs_3\fP (uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)" .br .RI "\fBZHETRS_3\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zhetrs_3 (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fBZHETRS_3\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZHETRS_3 solves a system of linear equations A * X = B with a complex Hermitian matrix A using the factorization computed by ZHETRF_RK or ZHETRF_BK: A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), where U (or L) is unit upper (or lower) triangular matrix, U**H (or L**H) is the conjugate of U (or L), P is a permutation matrix, P**T is the transpose of P, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks\&. This algorithm is using Level 3 BLAS\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix: = 'U': Upper triangular, form is A = P*U*D*(U**H)*(P**T); = 'L': Lower triangular, form is A = P*L*D*(L**H)*(P**T)\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fINRHS\fP .PP .nf NRHS is INTEGER The number of right hand sides, i\&.e\&., the number of columns of the matrix B\&. NRHS >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) Diagonal of the block diagonal matrix D and factors U or L as computed by ZHETRF_RK and ZHETRF_BK: a) ONLY diagonal elements of the Hermitian block diagonal matrix D on the diagonal of A, i\&.e\&. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D should be provided on entry in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A\&. If UPLO = 'L': factor L in the subdiagonal part of A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIE\fP .PP .nf E is COMPLEX*16 array, dimension (N) On entry, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced\&. NOTE: For 1-by-1 diagonal block D(k), where 1 <= k <= N, the element E(k) is not referenced in both UPLO = 'U' or UPLO = 'L' cases\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHETRF_RK or ZHETRF_BK\&. .fi .PP .br \fIB\fP .PP .nf B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side matrix B\&. On exit, the solution matrix X\&. .fi .PP .br \fILDB\fP .PP .nf LDB is INTEGER The leading dimension of the array B\&. LDB >= max(1,N)\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 .PP .nf June 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J\&. Higham, Craig Lucas, School of Mathematics, University of Manchester .fi .PP .RE .PP .PP Definition at line \fB163\fP of file \fBzhetrs_3\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.