TESTING/LIN/zhet01_rook.f(3) Library Functions Manual NAME TESTING/LIN/zhet01_rook.f SYNOPSIS Functions/Subroutines subroutine zhet01_rook (uplo, n, a, lda, afac, ldafac, ipiv, c, ldc, rwork, resid) ZHET01_ROOK Function/Subroutine Documentation subroutine zhet01_rook (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldafac, * ) afac, integer ldafac, integer, dimension( * ) ipiv, complex*16, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) rwork, double precision resid) ZHET01_ROOK Purpose: !> !> ZHET01_ROOK reconstructs a complex Hermitian indefinite matrix A from its !> block L*D*L' or U*D*U' factorization and computes the residual !> norm( C - A ) / ( N * norm(A) * EPS ), !> where C is the reconstructed matrix, EPS is the machine epsilon, !> L' is the transpose of L, and U' is the transpose of U. !> Parameters UPLO !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> complex Hermitian matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !> N !> N is INTEGER !> The number of rows and columns of the matrix A. N >= 0. !> A !> A is COMPLEX*16 array, dimension (LDA,N) !> The original complex Hermitian matrix A. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N) !> AFAC !> AFAC is COMPLEX*16 array, dimension (LDAFAC,N) !> The factored form of the matrix A. AFAC contains the block !> diagonal matrix D and the multipliers used to obtain the !> factor L or U from the block L*D*L' or U*D*U' factorization !> as computed by CSYTRF_ROOK. !> LDAFAC !> LDAFAC is INTEGER !> The leading dimension of the array AFAC. LDAFAC >= max(1,N). !> IPIV !> IPIV is INTEGER array, dimension (N) !> The pivot indices from CSYTRF_ROOK. !> C !> C is COMPLEX*16 array, dimension (LDC,N) !> LDC !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,N). !> RWORK !> RWORK is DOUBLE PRECISION array, dimension (N) !> RESID !> RESID is DOUBLE PRECISION !> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) !> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 123 of file zhet01_rook.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 TESTING/LIN/zhet01_rook.f(3)