TESTING/LIN/zhet01.f(3) | Library Functions Manual | TESTING/LIN/zhet01.f(3) |
NAME
TESTING/LIN/zhet01.f
SYNOPSIS
Functions/Subroutines
subroutine zhet01 (uplo, n, a, lda, afac, ldafac, ipiv, c,
ldc, rwork, resid)
ZHET01
Function/Subroutine Documentation
subroutine zhet01 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldafac, * ) afac, integer ldafac, integer, dimension( * ) ipiv, complex*16, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) rwork, double precision resid)
ZHET01
Purpose:
!> !> ZHET01 reconstructs a Hermitian indefinite matrix A from its !> block L*D*L' or U*D*U' factorization and computes the residual !> norm( C - A ) / ( N * norm(A) * EPS ), !> where C is the reconstructed matrix, EPS is the machine epsilon, !> L' is the conjugate transpose of L, and U' is the conjugate transpose !> of U. !>
Parameters
UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !>
N
!> N is INTEGER !> The number of rows and columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The original Hermitian matrix A. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N) !>
AFAC
!> AFAC is COMPLEX*16 array, dimension (LDAFAC,N) !> The factored form of the matrix A. AFAC contains the block !> diagonal matrix D and the multipliers used to obtain the !> factor L or U from the block L*D*L' or U*D*U' factorization !> as computed by ZHETRF. !>
LDAFAC
!> LDAFAC is INTEGER !> The leading dimension of the array AFAC. LDAFAC >= max(1,N). !>
IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices from ZHETRF. !>
C
!> C is COMPLEX*16 array, dimension (LDC,N) !>
LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,N). !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (N) !>
RESID
!> RESID is DOUBLE PRECISION !> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) !> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 124 of file zhet01.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |