.TH "SRC/zheevr_2stage.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zheevr_2stage.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzheevr_2stage\fP (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, rwork, lrwork, iwork, liwork, info)" .br .RI "\fB ZHEEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zheevr_2stage (character jobz, character range, character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision vl, double precision vu, integer il, integer iu, double precision abstol, integer m, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, integer, dimension( * ) isuppz, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork, integer info)" .PP \fB ZHEEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZHEEVR_2STAGE computes selected eigenvalues and, optionally, eigenvectors !> of a complex Hermitian matrix A using the 2stage technique for !> the reduction to tridiagonal\&. Eigenvalues and eigenvectors can !> be selected by specifying either a range of values or a range of !> indices for the desired eigenvalues\&. !> !> ZHEEVR_2STAGE first reduces the matrix A to tridiagonal form T with a call !> to ZHETRD\&. Then, whenever possible, ZHEEVR_2STAGE calls ZSTEMR to compute !> eigenspectrum using Relatively Robust Representations\&. ZSTEMR !> computes eigenvalues by the dqds algorithm, while orthogonal !> eigenvectors are computed from various L D L^T representations !> (also known as Relatively Robust Representations)\&. Gram-Schmidt !> orthogonalization is avoided as far as possible\&. More specifically, !> the various steps of the algorithm are as follows\&. !> !> For each unreduced block (submatrix) of T, !> (a) Compute T - sigma I = L D L^T, so that L and D !> define all the wanted eigenvalues to high relative accuracy\&. !> This means that small relative changes in the entries of D and L !> cause only small relative changes in the eigenvalues and !> eigenvectors\&. The standard (unfactored) representation of the !> tridiagonal matrix T does not have this property in general\&. !> (b) Compute the eigenvalues to suitable accuracy\&. !> If the eigenvectors are desired, the algorithm attains full !> accuracy of the computed eigenvalues only right before !> the corresponding vectors have to be computed, see steps c) and d)\&. !> (c) For each cluster of close eigenvalues, select a new !> shift close to the cluster, find a new factorization, and refine !> the shifted eigenvalues to suitable accuracy\&. !> (d) For each eigenvalue with a large enough relative separation compute !> the corresponding eigenvector by forming a rank revealing twisted !> factorization\&. Go back to (c) for any clusters that remain\&. !> !> The desired accuracy of the output can be specified by the input !> parameter ABSTOL\&. !> !> For more details, see ZSTEMR's documentation and: !> - Inderjit S\&. Dhillon and Beresford N\&. Parlett: !> Linear Algebra and its Applications, 387(1), pp\&. 1-28, August 2004\&. !> - Inderjit Dhillon and Beresford Parlett: SIAM Journal on Matrix Analysis and Applications, Vol\&. 25, !> 2004\&. Also LAPACK Working Note 154\&. !> - Inderjit Dhillon: , !> Computer Science Division Technical Report No\&. UCB/CSD-97-971, !> UC Berkeley, May 1997\&. !> !> !> Note 1 : ZHEEVR_2STAGE calls ZSTEMR when the full spectrum is requested !> on machines which conform to the ieee-754 floating point standard\&. !> ZHEEVR_2STAGE calls DSTEBZ and ZSTEIN on non-ieee machines and !> when partial spectrum requests are made\&. !> !> Normal execution of ZSTEMR may create NaNs and infinities and !> hence may abort due to a floating point exception in environments !> which do not handle NaNs and infinities in the ieee standard default !> manner\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors\&. !> Not available in this release\&. !> .fi .PP .br \fIRANGE\fP .PP .nf !> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found\&. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found\&. !> = 'I': the IL-th through IU-th eigenvalues will be found\&. !> For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and !> ZSTEIN are called !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA, N) !> On entry, the Hermitian matrix A\&. If UPLO = 'U', the !> leading N-by-N upper triangular part of A contains the !> upper triangular part of the matrix A\&. If UPLO = 'L', !> the leading N-by-N lower triangular part of A contains !> the lower triangular part of the matrix A\&. !> On exit, the lower triangle (if UPLO='L') or the upper !> triangle (if UPLO='U') of A, including the diagonal, is !> destroyed\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIVL\fP .PP .nf !> VL is DOUBLE PRECISION !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIVU\fP .PP .nf !> VU is DOUBLE PRECISION !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIIL\fP .PP .nf !> IL is INTEGER !> If RANGE='I', the index of the !> smallest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIIU\fP .PP .nf !> IU is INTEGER !> If RANGE='I', the index of the !> largest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIABSTOL\fP .PP .nf !> ABSTOL is DOUBLE PRECISION !> The absolute error tolerance for the eigenvalues\&. !> An approximate eigenvalue is accepted as converged !> when it is determined to lie in an interval [a,b] !> of width less than or equal to !> !> ABSTOL + EPS * max( |a|,|b| ) , !> !> where EPS is the machine precision\&. If ABSTOL is less than !> or equal to zero, then EPS*|T| will be used in its place, !> where |T| is the 1-norm of the tridiagonal matrix obtained !> by reducing A to tridiagonal form\&. !> !> See by Demmel and !> Kahan, LAPACK Working Note #3\&. !> !> If high relative accuracy is important, set ABSTOL to !> DLAMCH( 'Safe minimum' )\&. Doing so will guarantee that !> eigenvalues are computed to high relative accuracy when !> possible in future releases\&. The current code does not !> make any guarantees about high relative accuracy, but !> future releases will\&. See J\&. Barlow and J\&. Demmel, !> , LAPACK Working Note #7, for a discussion !> of which matrices define their eigenvalues to high relative !> accuracy\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The total number of eigenvalues found\&. 0 <= M <= N\&. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is DOUBLE PRECISION array, dimension (N) !> The first M elements contain the selected eigenvalues in !> ascending order\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is COMPLEX*16 array, dimension (LDZ, max(1,M)) !> If JOBZ = 'V', then if INFO = 0, the first M columns of Z !> contain the orthonormal eigenvectors of the matrix A !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i)\&. !> If JOBZ = 'N', then Z is not referenced\&. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N)\&. !> .fi .PP .br \fIISUPPZ\fP .PP .nf !> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) !> The support of the eigenvectors in Z, i\&.e\&., the indices !> indicating the nonzero elements in Z\&. The i-th eigenvector !> is nonzero only in elements ISUPPZ( 2*i-1 ) through !> ISUPPZ( 2*i )\&. This is an output of ZSTEMR (tridiagonal !> matrix)\&. The support of the eigenvectors of A is typically !> 1:N because of the unitary transformations applied by ZUNMTR\&. !> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. !> If N <= 1, LWORK must be at least 1\&. !> If JOBZ = 'N' and N > 1, LWORK must be queried\&. !> LWORK = MAX(1, 26*N, dimension) where !> dimension = max(stage1,stage2) + (KD+1)*N + N !> = N*KD + N*max(KD+1,FACTOPTNB) !> + max(2*KD*KD, KD*NTHREADS) !> + (KD+1)*N + N !> where KD is the blocking size of the reduction, !> FACTOPTNB is the blocking used by the QR or LQ !> algorithm, usually FACTOPTNB=128 is a good choice !> NTHREADS is the number of threads used when !> openMP compilation is enabled, otherwise =1\&. !> If JOBZ = 'V' and N > 1, LWORK must be queried\&. Not yet available !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK, RWORK and !> IWORK arrays, returns these values as the first entries of !> the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) !> On exit, if INFO = 0, RWORK(1) returns the optimal !> (and minimal) LRWORK\&. !> .fi .PP .br \fILRWORK\fP .PP .nf !> LRWORK is INTEGER !> The length of the array RWORK\&. !> If N <= 1, LRWORK >= 1, else LRWORK >= 24*N\&. !> !> If LRWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) !> On exit, if INFO = 0, IWORK(1) returns the optimal !> (and minimal) LIWORK\&. !> .fi .PP .br \fILIWORK\fP .PP .nf !> LIWORK is INTEGER !> The dimension of the array IWORK\&. !> If N <= 1, LIWORK >= 1, else LIWORK >= 10*N\&. !> !> If LIWORK = -1, then a workspace query is assumed; the !> routine only calculates the optimal sizes of the WORK, RWORK !> and IWORK arrays, returns these values as the first entries !> of the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: Internal error !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Inderjit Dhillon, IBM Almaden, USA .br Osni Marques, LBNL/NERSC, USA .br Ken Stanley, Computer Science Division, University of California at Berkeley, USA .br Jason Riedy, Computer Science Division, University of California at Berkeley, USA .br .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> All details about the 2stage techniques are available in: !> !> Azzam Haidar, Hatem Ltaief, and Jack Dongarra\&. !> Parallel reduction to condensed forms for symmetric eigenvalue problems !> using aggregated fine-grained and memory-aware kernels\&. In Proceedings !> of 2011 International Conference for High Performance Computing, !> Networking, Storage and Analysis (SC '11), New York, NY, USA, !> Article 8 , 11 pages\&. !> http://doi\&.acm\&.org/10\&.1145/2063384\&.2063394 !> !> A\&. Haidar, J\&. Kurzak, P\&. Luszczek, 2013\&. !> An improved parallel singular value algorithm and its implementation !> for multicore hardware, In Proceedings of 2013 International Conference !> for High Performance Computing, Networking, Storage and Analysis (SC '13)\&. !> Denver, Colorado, USA, 2013\&. !> Article 90, 12 pages\&. !> http://doi\&.acm\&.org/10\&.1145/2503210\&.2503292 !> !> A\&. Haidar, R\&. Solca, S\&. Tomov, T\&. Schulthess and J\&. Dongarra\&. !> A novel hybrid CPU-GPU generalized eigensolver for electronic structure !> calculations based on fine-grained memory aware tasks\&. !> International Journal of High Performance Computing Applications\&. !> Volume 28 Issue 2, Pages 196-209, May 2014\&. !> http://hpc\&.sagepub\&.com/content/28/2/196 !> !> .fi .PP .RE .PP .PP Definition at line \fB405\fP of file \fBzheevr_2stage\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.