.TH "SRC/zhecon_3.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zhecon_3.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzhecon_3\fP (uplo, n, a, lda, e, ipiv, anorm, rcond, work, info)" .br .RI "\fBZHECON_3\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zhecon_3 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, double precision anorm, double precision rcond, complex*16, dimension( * ) work, integer info)" .PP \fBZHECON_3\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZHECON_3 estimates the reciprocal of the condition number (in the 1-norm) of a complex Hermitian matrix A using the factorization computed by ZHETRF_RK or ZHETRF_BK: A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), where U (or L) is unit upper (or lower) triangular matrix, U**H (or L**H) is the conjugate of U (or L), P is a permutation matrix, P**T is the transpose of P, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks\&. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A)))\&. This routine uses BLAS3 solver ZHETRS_3\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix: = 'U': Upper triangular, form is A = P*U*D*(U**H)*(P**T); = 'L': Lower triangular, form is A = P*L*D*(L**H)*(P**T)\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) Diagonal of the block diagonal matrix D and factors U or L as computed by ZHETRF_RK and ZHETRF_BK: a) ONLY diagonal elements of the Hermitian block diagonal matrix D on the diagonal of A, i\&.e\&. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D should be provided on entry in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A\&. If UPLO = 'L': factor L in the subdiagonal part of A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIE\fP .PP .nf E is COMPLEX*16 array, dimension (N) On entry, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced\&. NOTE: For 1-by-1 diagonal block D(k), where 1 <= k <= N, the element E(k) is not referenced in both UPLO = 'U' or UPLO = 'L' cases\&. .fi .PP .br \fIIPIV\fP .PP .nf IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHETRF_RK or ZHETRF_BK\&. .fi .PP .br \fIANORM\fP .PP .nf ANORM is DOUBLE PRECISION The 1-norm of the original matrix A\&. .fi .PP .br \fIRCOND\fP .PP .nf RCOND is DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (2*N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 .PP .nf June 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J\&. Higham, Craig Lucas, School of Mathematics, University of Manchester .fi .PP .RE .PP .PP Definition at line \fB164\fP of file \fBzhecon_3\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.