.TH "SRC/zhecon_3.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zhecon_3.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzhecon_3\fP (uplo, n, a, lda, e, ipiv, anorm, rcond, work, info)" .br .RI "\fBZHECON_3\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zhecon_3 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, double precision anorm, double precision rcond, complex*16, dimension( * ) work, integer info)" .PP \fBZHECON_3\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> ZHECON_3 estimates the reciprocal of the condition number (in the !> 1-norm) of a complex Hermitian matrix A using the factorization !> computed by ZHETRF_RK or ZHETRF_BK: !> !> A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), !> !> where U (or L) is unit upper (or lower) triangular matrix, !> U**H (or L**H) is the conjugate of U (or L), P is a permutation !> matrix, P**T is the transpose of P, and D is Hermitian and block !> diagonal with 1-by-1 and 2-by-2 diagonal blocks\&. !> !> An estimate is obtained for norm(inv(A)), and the reciprocal of the !> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A)))\&. !> This routine uses BLAS3 solver ZHETRS_3\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are !> stored as an upper or lower triangular matrix: !> = 'U': Upper triangular, form is A = P*U*D*(U**H)*(P**T); !> = 'L': Lower triangular, form is A = P*L*D*(L**H)*(P**T)\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> Diagonal of the block diagonal matrix D and factors U or L !> as computed by ZHETRF_RK and ZHETRF_BK: !> a) ONLY diagonal elements of the Hermitian block diagonal !> matrix D on the diagonal of A, i\&.e\&. D(k,k) = A(k,k); !> (superdiagonal (or subdiagonal) elements of D !> should be provided on entry in array E), and !> b) If UPLO = 'U': factor U in the superdiagonal part of A\&. !> If UPLO = 'L': factor L in the subdiagonal part of A\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is COMPLEX*16 array, dimension (N) !> On entry, contains the superdiagonal (or subdiagonal) !> elements of the Hermitian block diagonal matrix D !> with 1-by-1 or 2-by-2 diagonal blocks, where !> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; !> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced\&. !> !> NOTE: For 1-by-1 diagonal block D(k), where !> 1 <= k <= N, the element E(k) is not referenced in both !> UPLO = 'U' or UPLO = 'L' cases\&. !> .fi .PP .br \fIIPIV\fP .PP .nf !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZHETRF_RK or ZHETRF_BK\&. !> .fi .PP .br \fIANORM\fP .PP .nf !> ANORM is DOUBLE PRECISION !> The 1-norm of the original matrix A\&. !> .fi .PP .br \fIRCOND\fP .PP .nf !> RCOND is DOUBLE PRECISION !> The reciprocal of the condition number of the matrix A, !> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an !> estimate of the 1-norm of inv(A) computed in this routine\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (2*N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 .PP .nf !> !> June 2017, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !> September 2007, Sven Hammarling, Nicholas J\&. Higham, Craig Lucas, !> School of Mathematics, !> University of Manchester !> !> .fi .PP .RE .PP .PP Definition at line \fB164\fP of file \fBzhecon_3\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.