.TH "SRC/zhbgv.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zhbgv.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzhbgv\fP (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, rwork, info)" .br .RI "\fBZHBGV\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zhbgv (character jobz, character uplo, integer n, integer ka, integer kb, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldbb, * ) bb, integer ldbb, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)" .PP \fBZHBGV\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZHBGV computes all the eigenvalues, and optionally, the eigenvectors !> of a complex generalized Hermitian-definite banded eigenproblem, of !> the form A*x=(lambda)*B*x\&. Here A and B are assumed to be Hermitian !> and banded, and B is also positive definite\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangles of A and B are stored; !> = 'L': Lower triangles of A and B are stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrices A and B\&. N >= 0\&. !> .fi .PP .br \fIKA\fP .PP .nf !> KA is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'\&. KA >= 0\&. !> .fi .PP .br \fIKB\fP .PP .nf !> KB is INTEGER !> The number of superdiagonals of the matrix B if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'\&. KB >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is COMPLEX*16 array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first ka+1 rows of the array\&. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka)\&. !> !> On exit, the contents of AB are destroyed\&. !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array AB\&. LDAB >= KA+1\&. !> .fi .PP .br \fIBB\fP .PP .nf !> BB is COMPLEX*16 array, dimension (LDBB, N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix B, stored in the first kb+1 rows of the array\&. The !> j-th column of B is stored in the j-th column of the array BB !> as follows: !> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; !> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb)\&. !> !> On exit, the factor S from the split Cholesky factorization !> B = S**H*S, as returned by ZPBSTF\&. !> .fi .PP .br \fILDBB\fP .PP .nf !> LDBB is INTEGER !> The leading dimension of the array BB\&. LDBB >= KB+1\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, the eigenvalues in ascending order\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is COMPLEX*16 array, dimension (LDZ, N) !> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of !> eigenvectors, with the i-th column of Z holding the !> eigenvector associated with W(i)\&. The eigenvectors are !> normalized so that Z**H*B*Z = I\&. !> If JOBZ = 'N', then Z is not referenced\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= N\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (N) !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (3*N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, and i is: !> <= N: the algorithm failed to converge: !> i off-diagonal elements of an intermediate !> tridiagonal form did not converge to zero; !> > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF !> returned INFO = i: B is not positive definite\&. !> The factorization of B could not be completed and !> no eigenvalues or eigenvectors were computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB181\fP of file \fBzhbgv\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.