.TH "SRC/zhbevx_2stage.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zhbevx_2stage.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzhbevx_2stage\fP (jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)" .br .RI "\fB ZHBEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zhbevx_2stage (character jobz, character range, character uplo, integer n, integer kd, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldq, * ) q, integer ldq, double precision vl, double precision vu, integer il, integer iu, double precision abstol, integer m, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer, dimension( * ) iwork, integer, dimension( * ) ifail, integer info)" .PP \fB ZHBEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZHBEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors !> of a complex Hermitian band matrix A using the 2stage technique for !> the reduction to tridiagonal\&. Eigenvalues and eigenvectors !> can be selected by specifying either a range of values or a range of !> indices for the desired eigenvalues\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBZ\fP .PP .nf !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors\&. !> Not available in this release\&. !> .fi .PP .br \fIRANGE\fP .PP .nf !> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found; !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found; !> = 'I': the IL-th through IU-th eigenvalues will be found\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIKD\fP .PP .nf !> KD is INTEGER !> The number of superdiagonals of the matrix A if UPLO = 'U', !> or the number of subdiagonals if UPLO = 'L'\&. KD >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is COMPLEX*16 array, dimension (LDAB, N) !> On entry, the upper or lower triangle of the Hermitian band !> matrix A, stored in the first KD+1 rows of the array\&. The !> j-th column of A is stored in the j-th column of the array AB !> as follows: !> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; !> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd)\&. !> !> On exit, AB is overwritten by values generated during the !> reduction to tridiagonal form\&. !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array AB\&. LDAB >= KD + 1\&. !> .fi .PP .br \fIQ\fP .PP .nf !> Q is COMPLEX*16 array, dimension (LDQ, N) !> If JOBZ = 'V', the N-by-N unitary matrix used in the !> reduction to tridiagonal form\&. !> If JOBZ = 'N', the array Q is not referenced\&. !> .fi .PP .br \fILDQ\fP .PP .nf !> LDQ is INTEGER !> The leading dimension of the array Q\&. If JOBZ = 'V', then !> LDQ >= max(1,N)\&. !> .fi .PP .br \fIVL\fP .PP .nf !> VL is DOUBLE PRECISION !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIVU\fP .PP .nf !> VU is DOUBLE PRECISION !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues\&. VL < VU\&. !> Not referenced if RANGE = 'A' or 'I'\&. !> .fi .PP .br \fIIL\fP .PP .nf !> IL is INTEGER !> If RANGE='I', the index of the !> smallest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIIU\fP .PP .nf !> IU is INTEGER !> If RANGE='I', the index of the !> largest eigenvalue to be returned\&. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0\&. !> Not referenced if RANGE = 'A' or 'V'\&. !> .fi .PP .br \fIABSTOL\fP .PP .nf !> ABSTOL is DOUBLE PRECISION !> The absolute error tolerance for the eigenvalues\&. !> An approximate eigenvalue is accepted as converged !> when it is determined to lie in an interval [a,b] !> of width less than or equal to !> !> ABSTOL + EPS * max( |a|,|b| ) , !> !> where EPS is the machine precision\&. If ABSTOL is less than !> or equal to zero, then EPS*|T| will be used in its place, !> where |T| is the 1-norm of the tridiagonal matrix obtained !> by reducing AB to tridiagonal form\&. !> !> Eigenvalues will be computed most accurately when ABSTOL is !> set to twice the underflow threshold 2*DLAMCH('S'), not zero\&. !> If this routine returns with INFO>0, indicating that some !> eigenvectors did not converge, try setting ABSTOL to !> 2*DLAMCH('S')\&. !> !> See by Demmel and !> Kahan, LAPACK Working Note #3\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The total number of eigenvalues found\&. 0 <= M <= N\&. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is DOUBLE PRECISION array, dimension (N) !> The first M elements contain the selected eigenvalues in !> ascending order\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is COMPLEX*16 array, dimension (LDZ, max(1,M)) !> If JOBZ = 'V', then if INFO = 0, the first M columns of Z !> contain the orthonormal eigenvectors of the matrix A !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i)\&. !> If an eigenvector fails to converge, then that column of Z !> contains the latest approximation to the eigenvector, and the !> index of the eigenvector is returned in IFAIL\&. !> If JOBZ = 'N', then Z is not referenced\&. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (LWORK) !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The length of the array WORK\&. LWORK >= 1, when N <= 1; !> otherwise !> If JOBZ = 'N' and N > 1, LWORK must be queried\&. !> LWORK = MAX(1, dimension) where !> dimension = (2KD+1)*N + KD*NTHREADS !> where KD is the size of the band\&. !> NTHREADS is the number of threads used when !> openMP compilation is enabled, otherwise =1\&. !> If JOBZ = 'V' and N > 1, LWORK must be queried\&. Not yet available\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal sizes of the WORK, RWORK and !> IWORK arrays, returns these values as the first entries of !> the WORK, RWORK and IWORK arrays, and no error message !> related to LWORK or LRWORK or LIWORK is issued by XERBLA\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (7*N) !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (5*N) !> .fi .PP .br \fIIFAIL\fP .PP .nf !> IFAIL is INTEGER array, dimension (N) !> If JOBZ = 'V', then if INFO = 0, the first M elements of !> IFAIL are zero\&. If INFO > 0, then IFAIL contains the !> indices of the eigenvectors that failed to converge\&. !> If JOBZ = 'N', then IFAIL is not referenced\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, then i eigenvectors failed to converge\&. !> Their indices are stored in array IFAIL\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> All details about the 2stage techniques are available in: !> !> Azzam Haidar, Hatem Ltaief, and Jack Dongarra\&. !> Parallel reduction to condensed forms for symmetric eigenvalue problems !> using aggregated fine-grained and memory-aware kernels\&. In Proceedings !> of 2011 International Conference for High Performance Computing, !> Networking, Storage and Analysis (SC '11), New York, NY, USA, !> Article 8 , 11 pages\&. !> http://doi\&.acm\&.org/10\&.1145/2063384\&.2063394 !> !> A\&. Haidar, J\&. Kurzak, P\&. Luszczek, 2013\&. !> An improved parallel singular value algorithm and its implementation !> for multicore hardware, In Proceedings of 2013 International Conference !> for High Performance Computing, Networking, Storage and Analysis (SC '13)\&. !> Denver, Colorado, USA, 2013\&. !> Article 90, 12 pages\&. !> http://doi\&.acm\&.org/10\&.1145/2503210\&.2503292 !> !> A\&. Haidar, R\&. Solca, S\&. Tomov, T\&. Schulthess and J\&. Dongarra\&. !> A novel hybrid CPU-GPU generalized eigensolver for electronic structure !> calculations based on fine-grained memory aware tasks\&. !> International Journal of High Performance Computing Applications\&. !> Volume 28 Issue 2, Pages 196-209, May 2014\&. !> http://hpc\&.sagepub\&.com/content/28/2/196 !> !> .fi .PP .RE .PP .PP Definition at line \fB323\fP of file \fBzhbevx_2stage\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.