.TH "TESTING/EIG/zgrqts.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/zgrqts.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgrqts\fP (m, p, n, a, af, q, r, lda, taua, b, bf, z, t, bwk, ldb, taub, work, lwork, rwork, result)" .br .RI "\fBZGRQTS\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgrqts (integer m, integer p, integer n, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) q, complex*16, dimension( lda, * ) r, integer lda, complex*16, dimension( * ) taua, complex*16, dimension( ldb, * ) b, complex*16, dimension( ldb, * ) bf, complex*16, dimension( ldb, * ) z, complex*16, dimension( ldb, * ) t, complex*16, dimension( ldb, * ) bwk, integer ldb, complex*16, dimension( * ) taub, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( 4 ) result)" .PP \fBZGRQTS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGRQTS tests ZGGRQF, which computes the GRQ factorization of an !> M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIP\fP .PP .nf !> P is INTEGER !> The number of rows of the matrix B\&. P >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrices A and B\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> The M-by-N matrix A\&. !> .fi .PP .br \fIAF\fP .PP .nf !> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the GRQ factorization of A and B, as returned !> by ZGGRQF, see CGGRQF for further details\&. !> .fi .PP .br \fIQ\fP .PP .nf !> Q is COMPLEX*16 array, dimension (LDA,N) !> The N-by-N unitary matrix Q\&. !> .fi .PP .br \fIR\fP .PP .nf !> R is COMPLEX*16 array, dimension (LDA,MAX(M,N)) !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the arrays A, AF, R and Q\&. !> LDA >= max(M,N)\&. !> .fi .PP .br \fITAUA\fP .PP .nf !> TAUA is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by DGGQRC\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the P-by-N matrix A\&. !> .fi .PP .br \fIBF\fP .PP .nf !> BF is COMPLEX*16 array, dimension (LDB,N) !> Details of the GQR factorization of A and B, as returned !> by ZGGRQF, see CGGRQF for further details\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is DOUBLE PRECISION array, dimension (LDB,P) !> The P-by-P unitary matrix Z\&. !> .fi .PP .br \fIT\fP .PP .nf !> T is COMPLEX*16 array, dimension (LDB,max(P,N)) !> .fi .PP .br \fIBWK\fP .PP .nf !> BWK is COMPLEX*16 array, dimension (LDB,N) !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the arrays B, BF, Z and T\&. !> LDB >= max(P,N)\&. !> .fi .PP .br \fITAUB\fP .PP .nf !> TAUB is COMPLEX*16 array, dimension (min(P,N)) !> The scalar factors of the elementary reflectors, as returned !> by DGGRQF\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (LWORK) !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK, LWORK >= max(M,P,N)**2\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (M) !> .fi .PP .br \fIRESULT\fP .PP .nf !> RESULT is DOUBLE PRECISION array, dimension (4) !> The test ratios: !> RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP) !> RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP) !> RESULT(3) = norm( I - Q'*Q ) / ( N*ULP ) !> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB174\fP of file \fBzgrqts\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.