.TH "TESTING/EIG/zgqrts.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/zgqrts.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgqrts\fP (n, m, p, a, af, q, r, lda, taua, b, bf, z, t, bwk, ldb, taub, work, lwork, rwork, result)" .br .RI "\fBZGQRTS\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgqrts (integer n, integer m, integer p, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) q, complex*16, dimension( lda, * ) r, integer lda, complex*16, dimension( * ) taua, complex*16, dimension( ldb, * ) b, complex*16, dimension( ldb, * ) bf, complex*16, dimension( ldb, * ) z, complex*16, dimension( ldb, * ) t, complex*16, dimension( ldb, * ) bwk, integer ldb, complex*16, dimension( * ) taub, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( 4 ) result)" .PP \fBZGQRTS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZGQRTS tests ZGGQRF, which computes the GQR factorization of an N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The number of rows of the matrices A and B\&. N >= 0\&. .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of columns of the matrix A\&. M >= 0\&. .fi .PP .br \fIP\fP .PP .nf P is INTEGER The number of columns of the matrix B\&. P >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,M) The N-by-M matrix A\&. .fi .PP .br \fIAF\fP .PP .nf AF is COMPLEX*16 array, dimension (LDA,N) Details of the GQR factorization of A and B, as returned by ZGGQRF, see CGGQRF for further details\&. .fi .PP .br \fIQ\fP .PP .nf Q is COMPLEX*16 array, dimension (LDA,N) The M-by-M unitary matrix Q\&. .fi .PP .br \fIR\fP .PP .nf R is COMPLEX*16 array, dimension (LDA,MAX(M,N)) .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the arrays A, AF, R and Q\&. LDA >= max(M,N)\&. .fi .PP .br \fITAUA\fP .PP .nf TAUA is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors, as returned by ZGGQRF\&. .fi .PP .br \fIB\fP .PP .nf B is COMPLEX*16 array, dimension (LDB,P) On entry, the N-by-P matrix A\&. .fi .PP .br \fIBF\fP .PP .nf BF is COMPLEX*16 array, dimension (LDB,N) Details of the GQR factorization of A and B, as returned by ZGGQRF, see CGGQRF for further details\&. .fi .PP .br \fIZ\fP .PP .nf Z is COMPLEX*16 array, dimension (LDB,P) The P-by-P unitary matrix Z\&. .fi .PP .br \fIT\fP .PP .nf T is COMPLEX*16 array, dimension (LDB,max(P,N)) .fi .PP .br \fIBWK\fP .PP .nf BWK is COMPLEX*16 array, dimension (LDB,N) .fi .PP .br \fILDB\fP .PP .nf LDB is INTEGER The leading dimension of the arrays B, BF, Z and T\&. LDB >= max(P,N)\&. .fi .PP .br \fITAUB\fP .PP .nf TAUB is COMPLEX*16 array, dimension (min(P,N)) The scalar factors of the elementary reflectors, as returned by DGGRQF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (LWORK) .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK, LWORK >= max(N,M,P)**2\&. .fi .PP .br \fIRWORK\fP .PP .nf RWORK is DOUBLE PRECISION array, dimension (max(N,M,P)) .fi .PP .br \fIRESULT\fP .PP .nf RESULT is DOUBLE PRECISION array, dimension (4) The test ratios: RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP) RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP) RESULT(3) = norm( I - Q'*Q ) / ( M*ULP ) RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB174\fP of file \fBzgqrts\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.