.TH "SRC/DEPRECATED/zggsvp.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/DEPRECATED/zggsvp.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzggsvp\fP (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)" .br .RI "\fBZGGSVP\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zggsvp (character jobu, character jobv, character jobq, integer m, integer p, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, double precision tola, double precision tolb, integer k, integer l, complex*16, dimension( ldu, * ) u, integer ldu, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( ldq, * ) q, integer ldq, integer, dimension( * ) iwork, double precision, dimension( * ) rwork, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)" .PP \fBZGGSVP\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> This routine is deprecated and has been replaced by routine ZGGSVP3\&. !> !> ZGGSVP computes unitary matrices U, V and Q such that !> !> N-K-L K L !> U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; !> L ( 0 0 A23 ) !> M-K-L ( 0 0 0 ) !> !> N-K-L K L !> = K ( 0 A12 A13 ) if M-K-L < 0; !> M-K ( 0 0 A23 ) !> !> N-K-L K L !> V**H*B*Q = L ( 0 0 B13 ) !> P-L ( 0 0 0 ) !> !> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular !> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, !> otherwise A23 is (M-K)-by-L upper trapezoidal\&. K+L = the effective !> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H\&. !> !> This decomposition is the preprocessing step for computing the !> Generalized Singular Value Decomposition (GSVD), see subroutine !> ZGGSVD\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBU\fP .PP .nf !> JOBU is CHARACTER*1 !> = 'U': Unitary matrix U is computed; !> = 'N': U is not computed\&. !> .fi .PP .br \fIJOBV\fP .PP .nf !> JOBV is CHARACTER*1 !> = 'V': Unitary matrix V is computed; !> = 'N': V is not computed\&. !> .fi .PP .br \fIJOBQ\fP .PP .nf !> JOBQ is CHARACTER*1 !> = 'Q': Unitary matrix Q is computed; !> = 'N': Q is not computed\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIP\fP .PP .nf !> P is INTEGER !> The number of rows of the matrix B\&. P >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrices A and B\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A\&. !> On exit, A contains the triangular (or trapezoidal) matrix !> described in the Purpose section\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the P-by-N matrix B\&. !> On exit, B contains the triangular matrix described in !> the Purpose section\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,P)\&. !> .fi .PP .br \fITOLA\fP .PP .nf !> TOLA is DOUBLE PRECISION !> .fi .PP .br \fITOLB\fP .PP .nf !> TOLB is DOUBLE PRECISION !> !> TOLA and TOLB are the thresholds to determine the effective !> numerical rank of matrix B and a subblock of A\&. Generally, !> they are set to !> TOLA = MAX(M,N)*norm(A)*MAZHEPS, !> TOLB = MAX(P,N)*norm(B)*MAZHEPS\&. !> The size of TOLA and TOLB may affect the size of backward !> errors of the decomposition\&. !> .fi .PP .br \fIK\fP .PP .nf !> K is INTEGER !> .fi .PP .br \fIL\fP .PP .nf !> L is INTEGER !> !> On exit, K and L specify the dimension of the subblocks !> described in Purpose section\&. !> K + L = effective numerical rank of (A**H,B**H)**H\&. !> .fi .PP .br \fIU\fP .PP .nf !> U is COMPLEX*16 array, dimension (LDU,M) !> If JOBU = 'U', U contains the unitary matrix U\&. !> If JOBU = 'N', U is not referenced\&. !> .fi .PP .br \fILDU\fP .PP .nf !> LDU is INTEGER !> The leading dimension of the array U\&. LDU >= max(1,M) if !> JOBU = 'U'; LDU >= 1 otherwise\&. !> .fi .PP .br \fIV\fP .PP .nf !> V is COMPLEX*16 array, dimension (LDV,P) !> If JOBV = 'V', V contains the unitary matrix V\&. !> If JOBV = 'N', V is not referenced\&. !> .fi .PP .br \fILDV\fP .PP .nf !> LDV is INTEGER !> The leading dimension of the array V\&. LDV >= max(1,P) if !> JOBV = 'V'; LDV >= 1 otherwise\&. !> .fi .PP .br \fIQ\fP .PP .nf !> Q is COMPLEX*16 array, dimension (LDQ,N) !> If JOBQ = 'Q', Q contains the unitary matrix Q\&. !> If JOBQ = 'N', Q is not referenced\&. !> .fi .PP .br \fILDQ\fP .PP .nf !> LDQ is INTEGER !> The leading dimension of the array Q\&. LDQ >= max(1,N) if !> JOBQ = 'Q'; LDQ >= 1 otherwise\&. !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (N) !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (2*N) !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is COMPLEX*16 array, dimension (N) !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (max(3*N,M,P)) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization !> with column pivoting to detect the effective numerical rank of the !> a matrix\&. It may be replaced by a better rank determination strategy\&. !> .fi .PP .RE .PP .PP Definition at line \fB262\fP of file \fBzggsvp\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.