SRC/DEPRECATED/zggsvp.f(3) Library Functions Manual NAME SRC/DEPRECATED/zggsvp.f SYNOPSIS Functions/Subroutines subroutine zggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info) ZGGSVP Function/Subroutine Documentation subroutine zggsvp (character jobu, character jobv, character jobq, integer m, integer p, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, double precision tola, double precision tolb, integer k, integer l, complex*16, dimension( ldu, * ) u, integer ldu, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( ldq, * ) q, integer ldq, integer, dimension( * ) iwork, double precision, dimension( * ) rwork, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info) ZGGSVP Purpose: !> !> This routine is deprecated and has been replaced by routine ZGGSVP3. !> !> ZGGSVP computes unitary matrices U, V and Q such that !> !> N-K-L K L !> U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; !> L ( 0 0 A23 ) !> M-K-L ( 0 0 0 ) !> !> N-K-L K L !> = K ( 0 A12 A13 ) if M-K-L < 0; !> M-K ( 0 0 A23 ) !> !> N-K-L K L !> V**H*B*Q = L ( 0 0 B13 ) !> P-L ( 0 0 0 ) !> !> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular !> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, !> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective !> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H. !> !> This decomposition is the preprocessing step for computing the !> Generalized Singular Value Decomposition (GSVD), see subroutine !> ZGGSVD. !> Parameters JOBU !> JOBU is CHARACTER*1 !> = 'U': Unitary matrix U is computed; !> = 'N': U is not computed. !> JOBV !> JOBV is CHARACTER*1 !> = 'V': Unitary matrix V is computed; !> = 'N': V is not computed. !> JOBQ !> JOBQ is CHARACTER*1 !> = 'Q': Unitary matrix Q is computed; !> = 'N': Q is not computed. !> M !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> P !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> N !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> A !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, A contains the triangular (or trapezoidal) matrix !> described in the Purpose section. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> B !> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the P-by-N matrix B. !> On exit, B contains the triangular matrix described in !> the Purpose section. !> LDB !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,P). !> TOLA !> TOLA is DOUBLE PRECISION !> TOLB !> TOLB is DOUBLE PRECISION !> !> TOLA and TOLB are the thresholds to determine the effective !> numerical rank of matrix B and a subblock of A. Generally, !> they are set to !> TOLA = MAX(M,N)*norm(A)*MAZHEPS, !> TOLB = MAX(P,N)*norm(B)*MAZHEPS. !> The size of TOLA and TOLB may affect the size of backward !> errors of the decomposition. !> K !> K is INTEGER !> L !> L is INTEGER !> !> On exit, K and L specify the dimension of the subblocks !> described in Purpose section. !> K + L = effective numerical rank of (A**H,B**H)**H. !> U !> U is COMPLEX*16 array, dimension (LDU,M) !> If JOBU = 'U', U contains the unitary matrix U. !> If JOBU = 'N', U is not referenced. !> LDU !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M) if !> JOBU = 'U'; LDU >= 1 otherwise. !> V !> V is COMPLEX*16 array, dimension (LDV,P) !> If JOBV = 'V', V contains the unitary matrix V. !> If JOBV = 'N', V is not referenced. !> LDV !> LDV is INTEGER !> The leading dimension of the array V. LDV >= max(1,P) if !> JOBV = 'V'; LDV >= 1 otherwise. !> Q !> Q is COMPLEX*16 array, dimension (LDQ,N) !> If JOBQ = 'Q', Q contains the unitary matrix Q. !> If JOBQ = 'N', Q is not referenced. !> LDQ !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N) if !> JOBQ = 'Q'; LDQ >= 1 otherwise. !> IWORK !> IWORK is INTEGER array, dimension (N) !> RWORK !> RWORK is DOUBLE PRECISION array, dimension (2*N) !> TAU !> TAU is COMPLEX*16 array, dimension (N) !> WORK !> WORK is COMPLEX*16 array, dimension (max(3*N,M,P)) !> INFO !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value. !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: !> !> The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization !> with column pivoting to detect the effective numerical rank of the !> a matrix. It may be replaced by a better rank determination strategy. !> Definition at line 262 of file zggsvp.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/DEPRECATED/zggsvp.f(3)