.TH "SRC/zgghrd.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zgghrd.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgghrd\fP (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)" .br .RI "\fBZGGHRD\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgghrd (character compq, character compz, integer n, integer ilo, integer ihi, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldq, * ) q, integer ldq, complex*16, dimension( ldz, * ) z, integer ldz, integer info)" .PP \fBZGGHRD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper !> Hessenberg form using unitary transformations, where A is a !> general matrix and B is upper triangular\&. The form of the !> generalized eigenvalue problem is !> A*x = lambda*B*x, !> and B is typically made upper triangular by computing its QR !> factorization and moving the unitary matrix Q to the left side !> of the equation\&. !> !> This subroutine simultaneously reduces A to a Hessenberg matrix H: !> Q**H*A*Z = H !> and transforms B to another upper triangular matrix T: !> Q**H*B*Z = T !> in order to reduce the problem to its standard form !> H*y = lambda*T*y !> where y = Z**H*x\&. !> !> The unitary matrices Q and Z are determined as products of Givens !> rotations\&. They may either be formed explicitly, or they may be !> postmultiplied into input matrices Q1 and Z1, so that !> Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H !> Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H !> If Q1 is the unitary matrix from the QR factorization of B in the !> original equation A*x = lambda*B*x, then ZGGHRD reduces the original !> problem to generalized Hessenberg form\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fICOMPQ\fP .PP .nf !> COMPQ is CHARACTER*1 !> = 'N': do not compute Q; !> = 'I': Q is initialized to the unit matrix, and the !> unitary matrix Q is returned; !> = 'V': Q must contain a unitary matrix Q1 on entry, !> and the product Q1*Q is returned\&. !> .fi .PP .br \fICOMPZ\fP .PP .nf !> COMPZ is CHARACTER*1 !> = 'N': do not compute Z; !> = 'I': Z is initialized to the unit matrix, and the !> unitary matrix Z is returned; !> = 'V': Z must contain a unitary matrix Z1 on entry, !> and the product Z1*Z is returned\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrices A and B\&. N >= 0\&. !> .fi .PP .br \fIILO\fP .PP .nf !> ILO is INTEGER !> .fi .PP .br \fIIHI\fP .PP .nf !> IHI is INTEGER !> !> ILO and IHI mark the rows and columns of A which are to be !> reduced\&. It is assumed that A is already upper triangular !> in rows and columns 1:ILO-1 and IHI+1:N\&. ILO and IHI are !> normally set by a previous call to ZGGBAL; otherwise they !> should be set to 1 and N respectively\&. !> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA, N) !> On entry, the N-by-N general matrix to be reduced\&. !> On exit, the upper triangle and the first subdiagonal of A !> are overwritten with the upper Hessenberg matrix H, and the !> rest is set to zero\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB, N) !> On entry, the N-by-N upper triangular matrix B\&. !> On exit, the upper triangular matrix T = Q**H B Z\&. The !> elements below the diagonal are set to zero\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIQ\fP .PP .nf !> Q is COMPLEX*16 array, dimension (LDQ, N) !> On entry, if COMPQ = 'V', the unitary matrix Q1, typically !> from the QR factorization of B\&. !> On exit, if COMPQ='I', the unitary matrix Q, and if !> COMPQ = 'V', the product Q1*Q\&. !> Not referenced if COMPQ='N'\&. !> .fi .PP .br \fILDQ\fP .PP .nf !> LDQ is INTEGER !> The leading dimension of the array Q\&. !> LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is COMPLEX*16 array, dimension (LDZ, N) !> On entry, if COMPZ = 'V', the unitary matrix Z1\&. !> On exit, if COMPZ='I', the unitary matrix Z, and if !> COMPZ = 'V', the product Z1*Z\&. !> Not referenced if COMPZ='N'\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. !> LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> This routine reduces A to Hessenberg and B to triangular form by !> an unblocked reduction, as described in _Matrix_Computations_, !> by Golub and van Loan (Johns Hopkins Press)\&. !> .fi .PP .RE .PP .PP Definition at line \fB202\fP of file \fBzgghrd\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.