.TH "SRC/zggglm.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zggglm.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzggglm\fP (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)" .br .RI "\fBZGGGLM\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zggglm (integer n, integer m, integer p, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) d, complex*16, dimension( * ) x, complex*16, dimension( * ) y, complex*16, dimension( * ) work, integer lwork, integer info)" .PP \fBZGGGLM\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZGGGLM solves a general Gauss-Markov linear model (GLM) problem: minimize || y ||_2 subject to d = A*x + B*y x where A is an N-by-M matrix, B is an N-by-P matrix, and d is a given N-vector\&. It is assumed that M <= N <= M+P, and rank(A) = M and rank( A B ) = N\&. Under these assumptions, the constrained equation is always consistent, and there is a unique solution x and a minimal 2-norm solution y, which is obtained using a generalized QR factorization of the matrices (A, B) given by A = Q*(R), B = Q*T*Z\&. (0) In particular, if matrix B is square nonsingular, then the problem GLM is equivalent to the following weighted linear least squares problem minimize || inv(B)*(d-A*x) ||_2 x where inv(B) denotes the inverse of B\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The number of rows of the matrices A and B\&. N >= 0\&. .fi .PP .br \fIM\fP .PP .nf M is INTEGER The number of columns of the matrix A\&. 0 <= M <= N\&. .fi .PP .br \fIP\fP .PP .nf P is INTEGER The number of columns of the matrix B\&. P >= N-M\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,M) On entry, the N-by-M matrix A\&. On exit, the upper triangular part of the array A contains the M-by-M upper triangular matrix R\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIB\fP .PP .nf B is COMPLEX*16 array, dimension (LDB,P) On entry, the N-by-P matrix B\&. On exit, if N <= P, the upper triangle of the subarray B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; if N > P, the elements on and above the (N-P)th subdiagonal contain the N-by-P upper trapezoidal matrix T\&. .fi .PP .br \fILDB\fP .PP .nf LDB is INTEGER The leading dimension of the array B\&. LDB >= max(1,N)\&. .fi .PP .br \fID\fP .PP .nf D is COMPLEX*16 array, dimension (N) On entry, D is the left hand side of the GLM equation\&. On exit, D is destroyed\&. .fi .PP .br \fIX\fP .PP .nf X is COMPLEX*16 array, dimension (M) .fi .PP .br \fIY\fP .PP .nf Y is COMPLEX*16 array, dimension (P) On exit, X and Y are the solutions of the GLM problem\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= max(1,N+M+P)\&. For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB, where NB is an upper bound for the optimal blocksizes for ZGEQRF, ZGERQF, ZUNMQR and ZUNMRQ\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit\&. < 0: if INFO = -i, the i-th argument had an illegal value\&. = 1: the upper triangular factor R associated with A in the generalized QR factorization of the pair (A, B) is singular, so that rank(A) < M; the least squares solution could not be computed\&. = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal factor T associated with B in the generalized QR factorization of the pair (A, B) is singular, so that rank( A B ) < N; the least squares solution could not be computed\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB183\fP of file \fBzggglm\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.