SRC/zggbak.f(3) Library Functions Manual SRC/zggbak.f(3) NAME SRC/zggbak.f SYNOPSIS Functions/Subroutines subroutine zggbak (job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info) ZGGBAK Function/Subroutine Documentation subroutine zggbak (character job, character side, integer n, integer ilo, integer ihi, double precision, dimension( * ) lscale, double precision, dimension( * ) rscale, integer m, complex*16, dimension( ldv, * ) v, integer ldv, integer info) ZGGBAK Purpose: !> !> ZGGBAK forms the right or left eigenvectors of a complex generalized !> eigenvalue problem A*x = lambda*B*x, by backward transformation on !> the computed eigenvectors of the balanced pair of matrices output by !> ZGGBAL. !> Parameters JOB !> JOB is CHARACTER*1 !> Specifies the type of backward transformation required: !> = 'N': do nothing, return immediately; !> = 'P': do backward transformation for permutation only; !> = 'S': do backward transformation for scaling only; !> = 'B': do backward transformations for both permutation and !> scaling. !> JOB must be the same as the argument JOB supplied to ZGGBAL. !> SIDE !> SIDE is CHARACTER*1 !> = 'R': V contains right eigenvectors; !> = 'L': V contains left eigenvectors. !> N !> N is INTEGER !> The number of rows of the matrix V. N >= 0. !> ILO !> ILO is INTEGER !> IHI !> IHI is INTEGER !> The integers ILO and IHI determined by ZGGBAL. !> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. !> LSCALE !> LSCALE is DOUBLE PRECISION array, dimension (N) !> Details of the permutations and/or scaling factors applied !> to the left side of A and B, as returned by ZGGBAL. !> RSCALE !> RSCALE is DOUBLE PRECISION array, dimension (N) !> Details of the permutations and/or scaling factors applied !> to the right side of A and B, as returned by ZGGBAL. !> M !> M is INTEGER !> The number of columns of the matrix V. M >= 0. !> V !> V is COMPLEX*16 array, dimension (LDV,M) !> On entry, the matrix of right or left eigenvectors to be !> transformed, as returned by ZTGEVC. !> On exit, V is overwritten by the transformed eigenvectors. !> LDV !> LDV is INTEGER !> The leading dimension of the matrix V. LDV >= max(1,N). !> INFO !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: !> !> See R.C. Ward, Balancing the generalized eigenvalue problem, !> SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. !> Definition at line 146 of file zggbak.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/zggbak.f(3)