.TH "SRC/zggbak.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zggbak.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzggbak\fP (job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)" .br .RI "\fBZGGBAK\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zggbak (character job, character side, integer n, integer ilo, integer ihi, double precision, dimension( * ) lscale, double precision, dimension( * ) rscale, integer m, complex*16, dimension( ldv, * ) v, integer ldv, integer info)" .PP \fBZGGBAK\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGGBAK forms the right or left eigenvectors of a complex generalized !> eigenvalue problem A*x = lambda*B*x, by backward transformation on !> the computed eigenvectors of the balanced pair of matrices output by !> ZGGBAL\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOB\fP .PP .nf !> JOB is CHARACTER*1 !> Specifies the type of backward transformation required: !> = 'N': do nothing, return immediately; !> = 'P': do backward transformation for permutation only; !> = 'S': do backward transformation for scaling only; !> = 'B': do backward transformations for both permutation and !> scaling\&. !> JOB must be the same as the argument JOB supplied to ZGGBAL\&. !> .fi .PP .br \fISIDE\fP .PP .nf !> SIDE is CHARACTER*1 !> = 'R': V contains right eigenvectors; !> = 'L': V contains left eigenvectors\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of rows of the matrix V\&. N >= 0\&. !> .fi .PP .br \fIILO\fP .PP .nf !> ILO is INTEGER !> .fi .PP .br \fIIHI\fP .PP .nf !> IHI is INTEGER !> The integers ILO and IHI determined by ZGGBAL\&. !> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0\&. !> .fi .PP .br \fILSCALE\fP .PP .nf !> LSCALE is DOUBLE PRECISION array, dimension (N) !> Details of the permutations and/or scaling factors applied !> to the left side of A and B, as returned by ZGGBAL\&. !> .fi .PP .br \fIRSCALE\fP .PP .nf !> RSCALE is DOUBLE PRECISION array, dimension (N) !> Details of the permutations and/or scaling factors applied !> to the right side of A and B, as returned by ZGGBAL\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of columns of the matrix V\&. M >= 0\&. !> .fi .PP .br \fIV\fP .PP .nf !> V is COMPLEX*16 array, dimension (LDV,M) !> On entry, the matrix of right or left eigenvectors to be !> transformed, as returned by ZTGEVC\&. !> On exit, V is overwritten by the transformed eigenvectors\&. !> .fi .PP .br \fILDV\fP .PP .nf !> LDV is INTEGER !> The leading dimension of the matrix V\&. LDV >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> See R\&.C\&. Ward, Balancing the generalized eigenvalue problem, !> SIAM J\&. Sci\&. Stat\&. Comp\&. 2 (1981), 141-152\&. !> .fi .PP .RE .PP .PP Definition at line \fB146\fP of file \fBzggbak\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.