.TH "TESTING/EIG/zget22.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/zget22.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzget22\fP (transa, transe, transw, n, a, lda, e, \fBlde\fP, w, work, rwork, result)" .br .RI "\fBZGET22\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zget22 (character transa, character transe, character transw, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( \fBlde\fP, * ) e, integer lde, complex*16, dimension( * ) w, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, double precision, dimension( 2 ) result)" .PP \fBZGET22\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGET22 does an eigenvector check\&. !> !> The basic test is: !> !> RESULT(1) = | A E - E W | / ( |A| |E| ulp ) !> !> using the 1-norm\&. It also tests the normalization of E: !> !> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) !> j !> !> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a !> vector\&. The max-norm of a complex n-vector x in this case is the !> maximum of |re(x(i)| + |im(x(i)| over i = 1, \&.\&.\&., n\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANSA\fP .PP .nf !> TRANSA is CHARACTER*1 !> Specifies whether or not A is transposed\&. !> = 'N': No transpose !> = 'T': Transpose !> = 'C': Conjugate transpose !> .fi .PP .br \fITRANSE\fP .PP .nf !> TRANSE is CHARACTER*1 !> Specifies whether or not E is transposed\&. !> = 'N': No transpose, eigenvectors are in columns of E !> = 'T': Transpose, eigenvectors are in rows of E !> = 'C': Conjugate transpose, eigenvectors are in rows of E !> .fi .PP .br \fITRANSW\fP .PP .nf !> TRANSW is CHARACTER*1 !> Specifies whether or not W is transposed\&. !> = 'N': No transpose !> = 'T': Transpose, same as TRANSW = 'N' !> = 'C': Conjugate transpose, use -WI(j) instead of WI(j) !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> The matrix whose eigenvectors are in E\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is COMPLEX*16 array, dimension (LDE,N) !> The matrix of eigenvectors\&. If TRANSE = 'N', the eigenvectors !> are stored in the columns of E, if TRANSE = 'T' or 'C', the !> eigenvectors are stored in the rows of E\&. !> .fi .PP .br \fILDE\fP .PP .nf !> LDE is INTEGER !> The leading dimension of the array E\&. LDE >= max(1,N)\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is COMPLEX*16 array, dimension (N) !> The eigenvalues of A\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (N*N) !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (N) !> .fi .PP .br \fIRESULT\fP .PP .nf !> RESULT is DOUBLE PRECISION array, dimension (2) !> RESULT(1) = | A E - E W | / ( |A| |E| ulp ) !> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) !> j !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB142\fP of file \fBzget22\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.