.TH "SRC/zgesvj.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zgesvj.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgesvj\fP (joba, jobu, jobv, m, n, a, lda, sva, mv, v, ldv, cwork, lwork, rwork, lrwork, info)" .br .RI "\fB ZGESVJ \fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgesvj (character*1 joba, character*1 jobu, character*1 jobv, integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( n ) sva, integer mv, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( lwork ) cwork, integer lwork, double precision, dimension( lrwork ) rwork, integer lrwork, integer info)" .PP \fB ZGESVJ \fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGESVJ computes the singular value decomposition (SVD) of a complex !> M-by-N matrix A, where M >= N\&. The SVD of A is written as !> [++] [xx] [x0] [xx] !> A = U * SIGMA * V^*, [++] = [xx] * [ox] * [xx] !> [++] [xx] !> where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal !> matrix, and V is an N-by-N unitary matrix\&. The diagonal elements !> of SIGMA are the singular values of A\&. The columns of U and V are the !> left and the right singular vectors of A, respectively\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIJOBA\fP .PP .nf !> JOBA is CHARACTER*1 !> Specifies the structure of A\&. !> = 'L': The input matrix A is lower triangular; !> = 'U': The input matrix A is upper triangular; !> = 'G': The input matrix A is general M-by-N matrix, M >= N\&. !> .fi .PP .br \fIJOBU\fP .PP .nf !> JOBU is CHARACTER*1 !> Specifies whether to compute the left singular vectors !> (columns of U): !> = 'U' or 'F': The left singular vectors corresponding to the nonzero !> singular values are computed and returned in the leading !> columns of A\&. See more details in the description of A\&. !> The default numerical orthogonality threshold is set to !> approximately TOL=CTOL*EPS, CTOL=SQRT(M), EPS=DLAMCH('E')\&. !> = 'C': Analogous to JOBU='U', except that user can control the !> level of numerical orthogonality of the computed left !> singular vectors\&. TOL can be set to TOL = CTOL*EPS, where !> CTOL is given on input in the array WORK\&. !> No CTOL smaller than ONE is allowed\&. CTOL greater !> than 1 / EPS is meaningless\&. The option 'C' !> can be used if M*EPS is satisfactory orthogonality !> of the computed left singular vectors, so CTOL=M could !> save few sweeps of Jacobi rotations\&. !> See the descriptions of A and WORK(1)\&. !> = 'N': The matrix U is not computed\&. However, see the !> description of A\&. !> .fi .PP .br \fIJOBV\fP .PP .nf !> JOBV is CHARACTER*1 !> Specifies whether to compute the right singular vectors, that !> is, the matrix V: !> = 'V' or 'J': the matrix V is computed and returned in the array V !> = 'A': the Jacobi rotations are applied to the MV-by-N !> array V\&. In other words, the right singular vector !> matrix V is not computed explicitly; instead it is !> applied to an MV-by-N matrix initially stored in the !> first MV rows of V\&. !> = 'N': the matrix V is not computed and the array V is not !> referenced !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the input matrix A\&. 1/DLAMCH('E') > M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the input matrix A\&. !> M >= N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A\&. !> On exit, !> If JOBU = 'U' \&.OR\&. JOBU = 'C': !> If INFO = 0 : !> RANKA orthonormal columns of U are returned in the !> leading RANKA columns of the array A\&. Here RANKA <= N !> is the number of computed singular values of A that are !> above the underflow threshold DLAMCH('S')\&. The singular !> vectors corresponding to underflowed or zero singular !> values are not computed\&. The value of RANKA is returned !> in the array RWORK as RANKA=NINT(RWORK(2))\&. Also see the !> descriptions of SVA and RWORK\&. The computed columns of U !> are mutually numerically orthogonal up to approximately !> TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU = 'C'), !> see the description of JOBU\&. !> If INFO > 0, !> the procedure ZGESVJ did not converge in the given number !> of iterations (sweeps)\&. In that case, the computed !> columns of U may not be orthogonal up to TOL\&. The output !> U (stored in A), SIGMA (given by the computed singular !> values in SVA(1:N)) and V is still a decomposition of the !> input matrix A in the sense that the residual !> || A - SCALE * U * SIGMA * V^* ||_2 / ||A||_2 is small\&. !> If JOBU = 'N': !> If INFO = 0 : !> Note that the left singular vectors are 'for free' in the !> one-sided Jacobi SVD algorithm\&. However, if only the !> singular values are needed, the level of numerical !> orthogonality of U is not an issue and iterations are !> stopped when the columns of the iterated matrix are !> numerically orthogonal up to approximately M*EPS\&. Thus, !> on exit, A contains the columns of U scaled with the !> corresponding singular values\&. !> If INFO > 0: !> the procedure ZGESVJ did not converge in the given number !> of iterations (sweeps)\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fISVA\fP .PP .nf !> SVA is DOUBLE PRECISION array, dimension (N) !> On exit, !> If INFO = 0 : !> depending on the value SCALE = RWORK(1), we have: !> If SCALE = ONE: !> SVA(1:N) contains the computed singular values of A\&. !> During the computation SVA contains the Euclidean column !> norms of the iterated matrices in the array A\&. !> If SCALE \&.NE\&. ONE: !> The singular values of A are SCALE*SVA(1:N), and this !> factored representation is due to the fact that some of the !> singular values of A might underflow or overflow\&. !> !> If INFO > 0: !> the procedure ZGESVJ did not converge in the given number of !> iterations (sweeps) and SCALE*SVA(1:N) may not be accurate\&. !> .fi .PP .br \fIMV\fP .PP .nf !> MV is INTEGER !> If JOBV = 'A', then the product of Jacobi rotations in ZGESVJ !> is applied to the first MV rows of V\&. See the description of JOBV\&. !> .fi .PP .br \fIV\fP .PP .nf !> V is COMPLEX*16 array, dimension (LDV,N) !> If JOBV = 'V', then V contains on exit the N-by-N matrix of !> the right singular vectors; !> If JOBV = 'A', then V contains the product of the computed right !> singular vector matrix and the initial matrix in !> the array V\&. !> If JOBV = 'N', then V is not referenced\&. !> .fi .PP .br \fILDV\fP .PP .nf !> LDV is INTEGER !> The leading dimension of the array V, LDV >= 1\&. !> If JOBV = 'V', then LDV >= MAX(1,N)\&. !> If JOBV = 'A', then LDV >= MAX(1,MV) \&. !> .fi .PP .br \fICWORK\fP .PP .nf !> CWORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> Used as workspace\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER\&. !> Length of CWORK\&. !> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M+N, otherwise\&. !> !> If on entry LWORK = -1, then a workspace query is assumed and !> no computation is done; CWORK(1) is set to the minial (and optimal) !> length of CWORK\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (max(6,LRWORK)) !> On entry, !> If JOBU = 'C' : !> RWORK(1) = CTOL, where CTOL defines the threshold for convergence\&. !> The process stops if all columns of A are mutually !> orthogonal up to CTOL*EPS, EPS=DLAMCH('E')\&. !> It is required that CTOL >= ONE, i\&.e\&. it is not !> allowed to force the routine to obtain orthogonality !> below EPSILON\&. !> On exit, !> RWORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N) !> are the computed singular values of A\&. !> (See description of SVA()\&.) !> RWORK(2) = NINT(RWORK(2)) is the number of the computed nonzero !> singular values\&. !> RWORK(3) = NINT(RWORK(3)) is the number of the computed singular !> values that are larger than the underflow threshold\&. !> RWORK(4) = NINT(RWORK(4)) is the number of sweeps of Jacobi !> rotations needed for numerical convergence\&. !> RWORK(5) = max_{i\&.NE\&.j} |COS(A(:,i),A(:,j))| in the last sweep\&. !> This is useful information in cases when ZGESVJ did !> not converge, as it can be used to estimate whether !> the output is still useful and for post festum analysis\&. !> RWORK(6) = the largest absolute value over all sines of the !> Jacobi rotation angles in the last sweep\&. It can be !> useful for a post festum analysis\&. !> .fi .PP .br \fILRWORK\fP .PP .nf !> LRWORK is INTEGER !> Length of RWORK\&. !> LRWORK >= 1, if MIN(M,N) = 0, and LRWORK >= MAX(6,N), otherwise\&. !> !> If on entry LRWORK = -1, then a workspace query is assumed and !> no computation is done; RWORK(1) is set to the minial (and optimal) !> length of RWORK\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, then the i-th argument had an illegal value !> > 0: ZGESVJ did not converge in the maximal allowed number !> (NSWEEP=30) of sweeps\&. The output may still be useful\&. !> See the description of RWORK\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane !> rotations\&. In the case of underflow of the tangent of the Jacobi angle, a !> modified Jacobi transformation of Drmac [3] is used\&. Pivot strategy uses !> column interchanges of de Rijk [1]\&. The relative accuracy of the computed !> singular values and the accuracy of the computed singular vectors (in !> angle metric) is as guaranteed by the theory of Demmel and Veselic [2]\&. !> The condition number that determines the accuracy in the full rank case !> is essentially min_{D=diag} kappa(A*D), where kappa(\&.) is the !> spectral condition number\&. The best performance of this Jacobi SVD !> procedure is achieved if used in an accelerated version of Drmac and !> Veselic [4,5], and it is the kernel routine in the SIGMA library [6]\&. !> Some tuning parameters (marked with [TP]) are available for the !> implementer\&. !> The computational range for the nonzero singular values is the machine !> number interval ( UNDERFLOW , OVERFLOW )\&. In extreme cases, even !> denormalized singular values can be computed with the corresponding !> gradual loss of accurate digits\&. !> .fi .PP .RE .PP \fBContributor:\fP .RS 4 .PP .nf !> !> ============ !> !> Zlatko Drmac (Zagreb, Croatia) !> !> .fi .PP .RE .PP \fBReferences:\fP .RS 4 .PP .nf !> !> [1] P\&. P\&. M\&. De Rijk: A one-sided Jacobi algorithm for computing the !> singular value decomposition on a vector computer\&. !> SIAM J\&. Sci\&. Stat\&. Comp\&., Vol\&. 10 (1998), pp\&. 359-371\&. !> [2] J\&. Demmel and K\&. Veselic: Jacobi method is more accurate than QR\&. !> [3] Z\&. Drmac: Implementation of Jacobi rotations for accurate singular !> value computation in floating point arithmetic\&. !> SIAM J\&. Sci\&. Comp\&., Vol\&. 18 (1997), pp\&. 1200-1222\&. !> [4] Z\&. Drmac and K\&. Veselic: New fast and accurate Jacobi SVD algorithm I\&. !> SIAM J\&. Matrix Anal\&. Appl\&. Vol\&. 35, No\&. 2 (2008), pp\&. 1322-1342\&. !> LAPACK Working note 169\&. !> [5] Z\&. Drmac and K\&. Veselic: New fast and accurate Jacobi SVD algorithm II\&. !> SIAM J\&. Matrix Anal\&. Appl\&. Vol\&. 35, No\&. 2 (2008), pp\&. 1343-1362\&. !> LAPACK Working note 170\&. !> [6] Z\&. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, !> QSVD, (H,K)-SVD computations\&. !> Department of Mathematics, University of Zagreb, 2008, 2015\&. !> .fi .PP .RE .PP \fBBugs, examples and comments:\fP .RS 4 .PP .nf !> =========================== !> Please report all bugs and send interesting test examples and comments to !> drmac@math\&.hr\&. Thank you\&. !> .fi .PP .RE .PP .PP Definition at line \fB353\fP of file \fBzgesvj\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.