SRC/zgerq2.f(3) Library Functions Manual SRC/zgerq2.f(3) NAME SRC/zgerq2.f SYNOPSIS Functions/Subroutines subroutine zgerq2 (m, n, a, lda, tau, work, info) ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm. Function/Subroutine Documentation subroutine zgerq2 (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info) ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm. Purpose: !> !> ZGERQ2 computes an RQ factorization of a complex m by n matrix A: !> A = R * Q. !> Parameters M !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> N !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> A !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the m by n matrix A. !> On exit, if m <= n, the upper triangle of the subarray !> A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; !> if m >= n, the elements on and above the (m-n)-th subdiagonal !> contain the m by n upper trapezoidal matrix R; the remaining !> elements, with the array TAU, represent the unitary matrix !> Q as a product of elementary reflectors (see Further !> Details). !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> TAU !> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors (see Further !> Details). !> WORK !> WORK is COMPLEX*16 array, dimension (M) !> INFO !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: !> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on !> exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i). !> Definition at line 122 of file zgerq2.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/zgerq2.f(3)