.TH "SRC/zgeqr.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zgeqr.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgeqr\fP (m, n, a, lda, t, tsize, work, lwork, info)" .br .RI "\fBZGEQR\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgeqr (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) t, integer tsize, complex*16, dimension( * ) work, integer lwork, integer info)" .PP \fBZGEQR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGEQR computes a QR factorization of a complex M-by-N matrix A: !> !> A = Q * ( R ), !> ( 0 ) !> !> where: !> !> Q is a M-by-M orthogonal matrix; !> R is an upper-triangular N-by-N matrix; !> 0 is a (M-N)-by-N zero matrix, if M > N\&. !> !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A\&. !> On exit, the elements on and above the diagonal of the array !> contain the min(M,N)-by-N upper trapezoidal matrix R !> (R is upper triangular if M >= N); !> the elements below the diagonal are used to store part of the !> data structure to represent Q\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIT\fP .PP .nf !> T is COMPLEX*16 array, dimension (MAX(5,TSIZE)) !> On exit, if INFO = 0, T(1) returns optimal (or either minimal !> or optimal, if query is assumed) TSIZE\&. See TSIZE for details\&. !> Remaining T contains part of the data structure used to represent Q\&. !> If one wants to apply or construct Q, then one needs to keep T !> (in addition to A) and pass it to further subroutines\&. !> .fi .PP .br \fITSIZE\fP .PP .nf !> TSIZE is INTEGER !> If TSIZE >= 5, the dimension of the array T\&. !> If TSIZE = -1 or -2, then a workspace query is assumed\&. The routine !> only calculates the sizes of the T and WORK arrays, returns these !> values as the first entries of the T and WORK arrays, and no error !> message related to T or WORK is issued by XERBLA\&. !> If TSIZE = -1, the routine calculates optimal size of T for the !> optimum performance and returns this value in T(1)\&. !> If TSIZE = -2, the routine calculates minimal size of T and !> returns this value in T(1)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) contains optimal (or either minimal !> or optimal, if query was assumed) LWORK\&. !> See LWORK for details\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= 1\&. !> If LWORK = -1 or -2, then a workspace query is assumed\&. The routine !> only calculates the sizes of the T and WORK arrays, returns these !> values as the first entries of the T and WORK arrays, and no error !> message related to T or WORK is issued by XERBLA\&. !> If LWORK = -1, the routine calculates optimal size of WORK for the !> optimal performance and returns this value in WORK(1)\&. !> If LWORK = -2, the routine calculates minimal size of WORK and !> returns this value in WORK(1)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details\fP .RS 4 .PP .nf !> !> The goal of the interface is to give maximum freedom to the developers for !> creating any QR factorization algorithm they wish\&. The triangular !> (trapezoidal) R has to be stored in the upper part of A\&. The lower part of A !> and the array T can be used to store any relevant information for applying or !> constructing the Q factor\&. The WORK array can safely be discarded after exit\&. !> !> Caution: One should not expect the sizes of T and WORK to be the same from one !> LAPACK implementation to the other, or even from one execution to the other\&. !> A workspace query (for T and WORK) is needed at each execution\&. However, !> for a given execution, the size of T and WORK are fixed and will not change !> from one query to the next\&. !> !> .fi .PP .RE .PP \fBFurther Details particular to this LAPACK implementation:\fP .RS 4 .PP .nf !> !> These details are particular for this LAPACK implementation\&. Users should not !> take them for granted\&. These details may change in the future, and are not likely !> true for another LAPACK implementation\&. These details are relevant if one wants !> to try to understand the code\&. They are not part of the interface\&. !> !> In this version, !> !> T(2): row block size (MB) !> T(3): column block size (NB) !> T(6:TSIZE): data structure needed for Q, computed by !> ZLATSQR or ZGEQRT !> !> Depending on the matrix dimensions M and N, and row and column !> block sizes MB and NB returned by ILAENV, ZGEQR will use either !> ZLATSQR (if the matrix is tall-and-skinny) or ZGEQRT to compute !> the QR factorization\&. !> !> .fi .PP .RE .PP .PP Definition at line \fB174\fP of file \fBzgeqr\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.