SRC/DEPRECATED/zgeqpf.f(3) Library Functions Manual NAME SRC/DEPRECATED/zgeqpf.f SYNOPSIS Functions/Subroutines subroutine zgeqpf (m, n, a, lda, jpvt, tau, work, rwork, info) ZGEQPF Function/Subroutine Documentation subroutine zgeqpf (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info) ZGEQPF Purpose: !> !> This routine is deprecated and has been replaced by routine ZGEQP3. !> !> ZGEQPF computes a QR factorization with column pivoting of a !> complex M-by-N matrix A: A*P = Q*R. !> Parameters M !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> N !> N is INTEGER !> The number of columns of the matrix A. N >= 0 !> A !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the upper triangle of the array contains the !> min(M,N)-by-N upper triangular matrix R; the elements !> below the diagonal, together with the array TAU, !> represent the unitary matrix Q as a product of !> min(m,n) elementary reflectors. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> JPVT !> JPVT is INTEGER array, dimension (N) !> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted !> to the front of A*P (a leading column); if JPVT(i) = 0, !> the i-th column of A is a free column. !> On exit, if JPVT(i) = k, then the i-th column of A*P !> was the k-th column of A. !> TAU !> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors. !> WORK !> WORK is COMPLEX*16 array, dimension (N) !> RWORK !> RWORK is DOUBLE PRECISION array, dimension (2*N) !> INFO !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: !> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(n) !> !> Each H(i) has the form !> !> H = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). !> !> The matrix P is represented in jpvt as follows: If !> jpvt(j) = i !> then the jth column of P is the ith canonical unit vector. !> !> Partial column norm updating strategy modified by !> Z. Drmac and Z. Bujanovic, Dept. of Mathematics, !> University of Zagreb, Croatia. !> -- April 2011 -- !> For more details see LAPACK Working Note 176. !> Definition at line 147 of file zgeqpf.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/DEPRECATED/zgeqpf.f(3)