.TH "SRC/DEPRECATED/zgeqpf.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/DEPRECATED/zgeqpf.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgeqpf\fP (m, n, a, lda, jpvt, tau, work, rwork, info)" .br .RI "\fBZGEQPF\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgeqpf (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)" .PP \fBZGEQPF\fP .PP \fBPurpose:\fP .RS 4 .PP .nf This routine is deprecated and has been replaced by routine ZGEQP3\&. ZGEQPF computes a QR factorization with column pivoting of a complex M-by-N matrix A: A*P = Q*R\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0 .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, the upper triangle of the array contains the min(M,N)-by-N upper triangular matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(m,n) elementary reflectors\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fIJPVT\fP .PP .nf JPVT is INTEGER array, dimension (N) On entry, if JPVT(i) \&.ne\&. 0, the i-th column of A is permuted to the front of A*P (a leading column); if JPVT(i) = 0, the i-th column of A is a free column\&. On exit, if JPVT(i) = k, then the i-th column of A*P was the k-th column of A\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (N) .fi .PP .br \fIRWORK\fP .PP .nf RWORK is DOUBLE PRECISION array, dimension (2*N) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) \&. \&. \&. H(n) Each H(i) has the form H = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i)\&. The matrix P is represented in jpvt as follows: If jpvt(j) = i then the jth column of P is the ith canonical unit vector\&. Partial column norm updating strategy modified by Z\&. Drmac and Z\&. Bujanovic, Dept\&. of Mathematics, University of Zagreb, Croatia\&. -- April 2011 -- For more details see LAPACK Working Note 176\&. .fi .PP .RE .PP .PP Definition at line \fB147\fP of file \fBzgeqpf\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.