.TH "SRC/DEPRECATED/zgeqpf.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/DEPRECATED/zgeqpf.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgeqpf\fP (m, n, a, lda, jpvt, tau, work, rwork, info)" .br .RI "\fBZGEQPF\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgeqpf (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)" .PP \fBZGEQPF\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> This routine is deprecated and has been replaced by routine ZGEQP3\&. !> !> ZGEQPF computes a QR factorization with column pivoting of a !> complex M-by-N matrix A: A*P = Q*R\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0 !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A\&. !> On exit, the upper triangle of the array contains the !> min(M,N)-by-N upper triangular matrix R; the elements !> below the diagonal, together with the array TAU, !> represent the unitary matrix Q as a product of !> min(m,n) elementary reflectors\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIJPVT\fP .PP .nf !> JPVT is INTEGER array, dimension (N) !> On entry, if JPVT(i) \&.ne\&. 0, the i-th column of A is permuted !> to the front of A*P (a leading column); if JPVT(i) = 0, !> the i-th column of A is a free column\&. !> On exit, if JPVT(i) = k, then the i-th column of A*P !> was the k-th column of A\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (N) !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (2*N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) \&. \&. \&. H(n) !> !> Each H(i) has the form !> !> H = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i)\&. !> !> The matrix P is represented in jpvt as follows: If !> jpvt(j) = i !> then the jth column of P is the ith canonical unit vector\&. !> !> Partial column norm updating strategy modified by !> Z\&. Drmac and Z\&. Bujanovic, Dept\&. of Mathematics, !> University of Zagreb, Croatia\&. !> -- April 2011 -- !> For more details see LAPACK Working Note 176\&. !> .fi .PP .RE .PP .PP Definition at line \fB147\fP of file \fBzgeqpf\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.