SRC/zgeqp3.f(3) Library Functions Manual SRC/zgeqp3.f(3) NAME SRC/zgeqp3.f SYNOPSIS Functions/Subroutines subroutine zgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, rwork, info) ZGEQP3 Function/Subroutine Documentation subroutine zgeqp3 (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer info) ZGEQP3 Purpose: !> !> ZGEQP3 computes a QR factorization with column pivoting of a !> matrix A: A*P = Q*R using Level 3 BLAS. !> Parameters M !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> N !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> A !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the upper triangle of the array contains the !> min(M,N)-by-N upper trapezoidal matrix R; the elements below !> the diagonal, together with the array TAU, represent the !> unitary matrix Q as a product of min(M,N) elementary !> reflectors. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> JPVT !> JPVT is INTEGER array, dimension (N) !> On entry, if JPVT(J).ne.0, the J-th column of A is permuted !> to the front of A*P (a leading column); if JPVT(J)=0, !> the J-th column of A is a free column. !> On exit, if JPVT(J)=K, then the J-th column of A*P was the !> the K-th column of A. !> TAU !> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors. !> WORK !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO=0, WORK(1) returns the optimal LWORK. !> LWORK !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= N+1. !> For optimal performance LWORK >= ( N+1 )*NB, where NB !> is the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> RWORK !> RWORK is DOUBLE PRECISION array, dimension (2*N) !> INFO !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: !> !> The matrix Q is represented as a product of elementary reflectors !> !> Q = H(1) H(2) . . . H(k), where k = min(m,n). !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a real/complex vector !> with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in !> A(i+1:m,i), and tau in TAU(i). !> Contributors: G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA Definition at line 157 of file zgeqp3.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/zgeqp3.f(3)