.TH "BLAS/SRC/zgemmtr.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME BLAS/SRC/zgemmtr.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgemmtr\fP (uplo, transa, transb, n, k, alpha, a, lda, b, ldb, beta, c, ldc)" .br .RI "\fBZGEMMTR\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgemmtr (character uplo, character transa, character transb, integer n, integer k, complex*16 alpha, complex*16, dimension(lda,*) a, integer lda, complex*16, dimension(ldb,*) b, integer ldb, complex*16 beta, complex*16, dimension(ldc,*) c, integer ldc)" .PP \fBZGEMMTR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGEMMTR performs one of the matrix-matrix operations !> !> C := alpha*op( A )*op( B ) + beta*C, !> !> where op( X ) is one of !> !> op( X ) = X or op( X ) = X**T, !> !> alpha and beta are scalars, and A, B and C are matrices, with op( A ) !> an n by k matrix, op( B ) a k by n matrix and C an n by n matrix\&. !> Thereby, the routine only accesses and updates the upper or lower !> triangular part of the result matrix C\&. This behaviour can be used if !> the resulting matrix C is known to be Hermitian or symmetric\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the lower or the upper !> triangular part of C is access and updated\&. !> !> UPLO = 'L' or 'l', the lower triangular part of C is used\&. !> !> UPLO = 'U' or 'u', the upper triangular part of C is used\&. !> .fi .PP .br \fITRANSA\fP .PP .nf !> TRANSA is CHARACTER*1 !> On entry, TRANSA specifies the form of op( A ) to be used in !> the matrix multiplication as follows: !> !> TRANSA = 'N' or 'n', op( A ) = A\&. !> !> TRANSA = 'T' or 't', op( A ) = A**T\&. !> !> TRANSA = 'C' or 'c', op( A ) = A**H\&. !> .fi .PP .br \fITRANSB\fP .PP .nf !> TRANSB is CHARACTER*1 !> On entry, TRANSB specifies the form of op( B ) to be used in !> the matrix multiplication as follows: !> !> TRANSB = 'N' or 'n', op( B ) = B\&. !> !> TRANSB = 'T' or 't', op( B ) = B**T\&. !> !> TRANSB = 'C' or 'c', op( B ) = B**H\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> On entry, N specifies the number of rows and columns of !> the matrix C, the number of columns of op(B) and the number !> of rows of op(A)\&. N must be at least zero\&. !> .fi .PP .br \fIK\fP .PP .nf !> K is INTEGER !> On entry, K specifies the number of columns of the matrix !> op( A ) and the number of rows of the matrix op( B )\&. K must !> be at least zero\&. !> .fi .PP .br \fIALPHA\fP .PP .nf !> ALPHA is COMPLEX*16\&. !> On entry, ALPHA specifies the scalar alpha\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is !> k when TRANSA = 'N' or 'n', and is n otherwise\&. !> Before entry with TRANSA = 'N' or 'n', the leading n by k !> part of the array A must contain the matrix A, otherwise !> the leading k by m part of the array A must contain the !> matrix A\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program\&. When TRANSA = 'N' or 'n' then !> LDA must be at least max( 1, n ), otherwise LDA must be at !> least max( 1, k )\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension ( LDB, kb ), where kb is !> n when TRANSB = 'N' or 'n', and is k otherwise\&. !> Before entry with TRANSB = 'N' or 'n', the leading k by n !> part of the array B must contain the matrix B, otherwise !> the leading n by k part of the array B must contain the !> matrix B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> On entry, LDB specifies the first dimension of B as declared !> in the calling (sub) program\&. When TRANSB = 'N' or 'n' then !> LDB must be at least max( 1, k ), otherwise LDB must be at !> least max( 1, n )\&. !> .fi .PP .br \fIBETA\fP .PP .nf !> BETA is COMPLEX*16\&. !> On entry, BETA specifies the scalar beta\&. When BETA is !> supplied as zero then C need not be set on input\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is COMPLEX*16 array, dimension ( LDC, N ) !> Before entry, the leading n by n part of the array C must !> contain the matrix C, except when beta is zero, in which !> case C need not be set on entry\&. !> On exit, the upper or lower triangular part of the matrix !> C is overwritten by the n by n matrix !> ( alpha*op( A )*op( B ) + beta*C )\&. !> .fi .PP .br \fILDC\fP .PP .nf !> LDC is INTEGER !> On entry, LDC specifies the first dimension of C as declared !> in the calling (sub) program\&. LDC must be at least !> max( 1, n )\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Martin Koehler .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> Level 3 Blas routine\&. !> !> -- Written on 19-July-2023\&. !> Martin Koehler, MPI Magdeburg !> .fi .PP .RE .PP .PP Definition at line \fB189\fP of file \fBzgemmtr\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.