.TH "SRC/DEPRECATED/zgelsx.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/DEPRECATED/zgelsx.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgelsx\fP (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, rwork, info)" .br .RI "\fB ZGELSX solves overdetermined or underdetermined systems for GE matrices\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgelsx (integer m, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, integer, dimension( * ) jpvt, double precision rcond, integer rank, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)" .PP \fB ZGELSX solves overdetermined or underdetermined systems for GE matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> This routine is deprecated and has been replaced by routine ZGELSY\&. !> !> ZGELSX computes the minimum-norm solution to a complex linear least !> squares problem: !> minimize || A * X - B || !> using a complete orthogonal factorization of A\&. A is an M-by-N !> matrix which may be rank-deficient\&. !> !> Several right hand side vectors b and solution vectors x can be !> handled in a single call; they are stored as the columns of the !> M-by-NRHS right hand side matrix B and the N-by-NRHS solution !> matrix X\&. !> !> The routine first computes a QR factorization with column pivoting: !> A * P = Q * [ R11 R12 ] !> [ 0 R22 ] !> with R11 defined as the largest leading submatrix whose estimated !> condition number is less than 1/RCOND\&. The order of R11, RANK, !> is the effective rank of A\&. !> !> Then, R22 is considered to be negligible, and R12 is annihilated !> by unitary transformations from the right, arriving at the !> complete orthogonal factorization: !> A * P = Q * [ T11 0 ] * Z !> [ 0 0 ] !> The minimum-norm solution is then !> X = P * Z**H [ inv(T11)*Q1**H*B ] !> [ 0 ] !> where Q1 consists of the first RANK columns of Q\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of !> columns of matrices B and X\&. NRHS >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A\&. !> On exit, A has been overwritten by details of its !> complete orthogonal factorization\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the M-by-NRHS right hand side matrix B\&. !> On exit, the N-by-NRHS solution matrix X\&. !> If m >= n and RANK = n, the residual sum-of-squares for !> the solution in the i-th column is given by the sum of !> squares of elements N+1:M in that column\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,M,N)\&. !> .fi .PP .br \fIJPVT\fP .PP .nf !> JPVT is INTEGER array, dimension (N) !> On entry, if JPVT(i) \&.ne\&. 0, the i-th column of A is an !> initial column, otherwise it is a free column\&. Before !> the QR factorization of A, all initial columns are !> permuted to the leading positions; only the remaining !> free columns are moved as a result of column pivoting !> during the factorization\&. !> On exit, if JPVT(i) = k, then the i-th column of A*P !> was the k-th column of A\&. !> .fi .PP .br \fIRCOND\fP .PP .nf !> RCOND is DOUBLE PRECISION !> RCOND is used to determine the effective rank of A, which !> is defined as the order of the largest leading triangular !> submatrix R11 in the QR factorization with pivoting of A, !> whose estimated condition number < 1/RCOND\&. !> .fi .PP .br \fIRANK\fP .PP .nf !> RANK is INTEGER !> The effective rank of A, i\&.e\&., the order of the submatrix !> R11\&. This is the same as the order of the submatrix T11 !> in the complete orthogonal factorization of A\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension !> (min(M,N) + max( N, 2*min(M,N)+NRHS )), !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (2*N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB182\fP of file \fBzgelsx\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.