.TH "SRC/zgelss.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zgelss.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgelss\fP (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, info)" .br .RI "\fB ZGELSS solves overdetermined or underdetermined systems for GE matrices\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgelss (integer m, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) s, double precision rcond, integer rank, complex*16, dimension( * ) work, integer lwork, double precision, dimension( * ) rwork, integer info)" .PP \fB ZGELSS solves overdetermined or underdetermined systems for GE matrices\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGELSS computes the minimum norm solution to a complex linear !> least squares problem: !> !> Minimize 2-norm(| b - A*x |)\&. !> !> using the singular value decomposition (SVD) of A\&. A is an M-by-N !> matrix which may be rank-deficient\&. !> !> Several right hand side vectors b and solution vectors x can be !> handled in a single call; they are stored as the columns of the !> M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix !> X\&. !> !> The effective rank of A is determined by treating as zero those !> singular values which are less than RCOND times the largest singular !> value\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrices B and X\&. NRHS >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A\&. !> On exit, the first min(m,n) rows of A are overwritten with !> its right singular vectors, stored rowwise\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the M-by-NRHS right hand side matrix B\&. !> On exit, B is overwritten by the N-by-NRHS solution matrix X\&. !> If m >= n and RANK = n, the residual sum-of-squares for !> the solution in the i-th column is given by the sum of !> squares of the modulus of elements n+1:m in that column\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,M,N)\&. !> .fi .PP .br \fIS\fP .PP .nf !> S is DOUBLE PRECISION array, dimension (min(M,N)) !> The singular values of A in decreasing order\&. !> The condition number of A in the 2-norm = S(1)/S(min(m,n))\&. !> .fi .PP .br \fIRCOND\fP .PP .nf !> RCOND is DOUBLE PRECISION !> RCOND is used to determine the effective rank of A\&. !> Singular values S(i) <= RCOND*S(1) are treated as zero\&. !> If RCOND < 0, machine precision is used instead\&. !> .fi .PP .br \fIRANK\fP .PP .nf !> RANK is INTEGER !> The effective rank of A, i\&.e\&., the number of singular values !> which are greater than RCOND*S(1)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= 1, and also: !> LWORK >= 2*min(M,N) + max(M,N,NRHS) !> For good performance, LWORK should generally be larger\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (5*min(M,N)) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> > 0: the algorithm for computing the SVD failed to converge; !> if INFO = i, i off-diagonal elements of an intermediate !> bidiagonal form did not converge to zero\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB176\fP of file \fBzgelss\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.