.TH "SRC/zgehd2.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zgehd2.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgehd2\fP (n, ilo, ihi, a, lda, tau, work, info)" .br .RI "\fBZGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgehd2 (integer n, integer ilo, integer ihi, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)" .PP \fBZGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H !> by a unitary similarity transformation: Q**H * A * Q = H \&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIILO\fP .PP .nf !> ILO is INTEGER !> .fi .PP .br \fIIHI\fP .PP .nf !> IHI is INTEGER !> !> It is assumed that A is already upper triangular in rows !> and columns 1:ILO-1 and IHI+1:N\&. ILO and IHI are normally !> set by a previous call to ZGEBAL; otherwise they should be !> set to 1 and N respectively\&. See Further Details\&. !> 1 <= ILO <= IHI <= max(1,N)\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the n by n general matrix to be reduced\&. !> On exit, the upper triangle and the first subdiagonal of A !> are overwritten with the upper Hessenberg matrix H, and the !> elements below the first subdiagonal, with the array TAU, !> represent the unitary matrix Q as a product of elementary !> reflectors\&. See Further Details\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is COMPLEX*16 array, dimension (N-1) !> The scalar factors of the elementary reflectors (see Further !> Details)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The matrix Q is represented as a product of (ihi-ilo) elementary !> reflectors !> !> Q = H(ilo) H(ilo+1) \&. \&. \&. H(ihi-1)\&. !> !> Each H(i) has the form !> !> H(i) = I - tau * v * v**H !> !> where tau is a complex scalar, and v is a complex vector with !> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on !> exit in A(i+2:ihi,i), and tau in TAU(i)\&. !> !> The contents of A are illustrated by the following example, with !> n = 7, ilo = 2 and ihi = 6: !> !> on entry, on exit, !> !> ( a a a a a a a ) ( a a h h h h a ) !> ( a a a a a a ) ( a h h h h a ) !> ( a a a a a a ) ( h h h h h h ) !> ( a a a a a a ) ( v2 h h h h h ) !> ( a a a a a a ) ( v2 v3 h h h h ) !> ( a a a a a a ) ( v2 v3 v4 h h h ) !> ( a ) ( a ) !> !> where a denotes an element of the original matrix A, h denotes a !> modified element of the upper Hessenberg matrix H, and vi denotes an !> element of the vector defining H(i)\&. !> .fi .PP .RE .PP .PP Definition at line \fB148\fP of file \fBzgehd2\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.