.TH "SRC/zgebrd.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zgebrd.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgebrd\fP (m, n, a, lda, d, e, tauq, taup, work, lwork, info)" .br .RI "\fBZGEBRD\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgebrd (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) d, double precision, dimension( * ) e, complex*16, dimension( * ) tauq, complex*16, dimension( * ) taup, complex*16, dimension( * ) work, integer lwork, integer info)" .PP \fBZGEBRD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGEBRD reduces a general complex M-by-N matrix A to upper or lower !> bidiagonal form B by a unitary transformation: Q**H * A * P = B\&. !> !> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows in the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns in the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N general matrix to be reduced\&. !> On exit, !> if m >= n, the diagonal and the first superdiagonal are !> overwritten with the upper bidiagonal matrix B; the !> elements below the diagonal, with the array TAUQ, represent !> the unitary matrix Q as a product of elementary !> reflectors, and the elements above the first superdiagonal, !> with the array TAUP, represent the unitary matrix P as !> a product of elementary reflectors; !> if m < n, the diagonal and the first subdiagonal are !> overwritten with the lower bidiagonal matrix B; the !> elements below the first subdiagonal, with the array TAUQ, !> represent the unitary matrix Q as a product of !> elementary reflectors, and the elements above the diagonal, !> with the array TAUP, represent the unitary matrix P as !> a product of elementary reflectors\&. !> See Further Details\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (min(M,N)) !> The diagonal elements of the bidiagonal matrix B: !> D(i) = A(i,i)\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is DOUBLE PRECISION array, dimension (min(M,N)-1) !> The off-diagonal elements of the bidiagonal matrix B: !> if m >= n, E(i) = A(i,i+1) for i = 1,2,\&.\&.\&.,n-1; !> if m < n, E(i) = A(i+1,i) for i = 1,2,\&.\&.\&.,m-1\&. !> .fi .PP .br \fITAUQ\fP .PP .nf !> TAUQ is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors which !> represent the unitary matrix Q\&. See Further Details\&. !> .fi .PP .br \fITAUP\fP .PP .nf !> TAUP is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors which !> represent the unitary matrix P\&. See Further Details\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The length of the array WORK\&. !> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MAX(M,N), otherwise\&. !> For optimum performance LWORK >= (M+N)*NB, where NB !> is the optimal blocksize\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The matrices Q and P are represented as products of elementary !> reflectors: !> !> If m >= n, !> !> Q = H(1) H(2) \&. \&. \&. H(n) and P = G(1) G(2) \&. \&. \&. G(n-1) !> !> Each H(i) and G(i) has the form: !> !> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H !> !> where tauq and taup are complex scalars, and v and u are complex !> vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in !> A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in !> A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i)\&. !> !> If m < n, !> !> Q = H(1) H(2) \&. \&. \&. H(m-1) and P = G(1) G(2) \&. \&. \&. G(m) !> !> Each H(i) and G(i) has the form: !> !> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H !> !> where tauq and taup are complex scalars, and v and u are complex !> vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in !> A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in !> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i)\&. !> !> The contents of A on exit are illustrated by the following examples: !> !> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): !> !> ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) !> ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) !> ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) !> ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) !> ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) !> ( v1 v2 v3 v4 v5 ) !> !> where d and e denote diagonal and off-diagonal elements of B, vi !> denotes an element of the vector defining H(i), and ui an element of !> the vector defining G(i)\&. !> .fi .PP .RE .PP .PP Definition at line \fB204\fP of file \fBzgebrd\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.