.TH "SRC/zgbsv.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zgbsv.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgbsv\fP (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)" .br .RI "\fB ZGBSV computes the solution to system of linear equations A * X = B for GB matrices\fP (simple driver) " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgbsv (integer n, integer kl, integer ku, integer nrhs, complex*16, dimension( ldab, * ) ab, integer ldab, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, integer info)" .PP \fB ZGBSV computes the solution to system of linear equations A * X = B for GB matrices\fP (simple driver) .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGBSV computes the solution to a complex system of linear equations !> A * X = B, where A is a band matrix of order N with KL subdiagonals !> and KU superdiagonals, and X and B are N-by-NRHS matrices\&. !> !> The LU decomposition with partial pivoting and row interchanges is !> used to factor A as A = L * U, where L is a product of permutation !> and unit lower triangular matrices with KL subdiagonals, and U is !> upper triangular with KL+KU superdiagonals\&. The factored form of A !> is then used to solve the system of equations A * X = B\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf !> N is INTEGER !> The number of linear equations, i\&.e\&., the order of the !> matrix A\&. N >= 0\&. !> .fi .PP .br \fIKL\fP .PP .nf !> KL is INTEGER !> The number of subdiagonals within the band of A\&. KL >= 0\&. !> .fi .PP .br \fIKU\fP .PP .nf !> KU is INTEGER !> The number of superdiagonals within the band of A\&. KU >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrix B\&. NRHS >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is COMPLEX*16 array, dimension (LDAB,N) !> On entry, the matrix A in band storage, in rows KL+1 to !> 2*KL+KU+1; rows 1 to KL of the array need not be set\&. !> The j-th column of A is stored in the j-th column of the !> array AB as follows: !> AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL) !> On exit, details of the factorization: U is stored as an !> upper triangular band matrix with KL+KU superdiagonals in !> rows 1 to KL+KU+1, and the multipliers used during the !> factorization are stored in rows KL+KU+2 to 2*KL+KU+1\&. !> See below for further details\&. !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array AB\&. LDAB >= 2*KL+KU+1\&. !> .fi .PP .br \fIIPIV\fP .PP .nf !> IPIV is INTEGER array, dimension (N) !> The pivot indices that define the permutation matrix P; !> row i of the matrix was interchanged with row IPIV(i)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B\&. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, U(i,i) is exactly zero\&. The factorization !> has been completed, but the factor U is exactly !> singular, and the solution has not been computed\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The band storage scheme is illustrated by the following example, when !> M = N = 6, KL = 2, KU = 1: !> !> On entry: On exit: !> !> * * * + + + * * * u14 u25 u36 !> * * + + + + * * u13 u24 u35 u46 !> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 !> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 !> a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * !> a31 a42 a53 a64 * * m31 m42 m53 m64 * * !> !> Array elements marked * are not used by the routine; elements marked !> + need not be set on entry, but are required by the routine to store !> elements of U because of fill-in resulting from the row interchanges\&. !> .fi .PP .RE .PP .PP Definition at line \fB161\fP of file \fBzgbsv\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.