.TH "SRC/zgbrfs.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zgbrfs.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgbrfs\fP (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)" .br .RI "\fBZGBRFS\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgbrfs (character trans, integer n, integer kl, integer ku, integer nrhs, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldafb, * ) afb, integer ldafb, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)" .PP \fBZGBRFS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGBRFS improves the computed solution to a system of linear !> equations when the coefficient matrix is banded, and provides !> error bounds and backward error estimates for the solution\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITRANS\fP .PP .nf !> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIKL\fP .PP .nf !> KL is INTEGER !> The number of subdiagonals within the band of A\&. KL >= 0\&. !> .fi .PP .br \fIKU\fP .PP .nf !> KU is INTEGER !> The number of superdiagonals within the band of A\&. KU >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of right hand sides, i\&.e\&., the number of columns !> of the matrices B and X\&. NRHS >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is COMPLEX*16 array, dimension (LDAB,N) !> The original band matrix A, stored in rows 1 to KL+KU+1\&. !> The j-th column of A is stored in the j-th column of the !> array AB as follows: !> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl)\&. !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array AB\&. LDAB >= KL+KU+1\&. !> .fi .PP .br \fIAFB\fP .PP .nf !> AFB is COMPLEX*16 array, dimension (LDAFB,N) !> Details of the LU factorization of the band matrix A, as !> computed by ZGBTRF\&. U is stored as an upper triangular band !> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and !> the multipliers used during the factorization are stored in !> rows KL+KU+2 to 2*KL+KU+1\&. !> .fi .PP .br \fILDAFB\fP .PP .nf !> LDAFB is INTEGER !> The leading dimension of the array AFB\&. LDAFB >= 2*KL*KU+1\&. !> .fi .PP .br \fIIPIV\fP .PP .nf !> IPIV is INTEGER array, dimension (N) !> The pivot indices from ZGBTRF; for 1<=i<=N, row i of the !> matrix was interchanged with row IPIV(i)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side matrix B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> On entry, the solution matrix X, as computed by ZGBTRS\&. !> On exit, the improved solution matrix X\&. !> .fi .PP .br \fILDX\fP .PP .nf !> LDX is INTEGER !> The leading dimension of the array X\&. LDX >= max(1,N)\&. !> .fi .PP .br \fIFERR\fP .PP .nf !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X)\&. !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j)\&. The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error\&. !> .fi .PP .br \fIBERR\fP .PP .nf !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i\&.e\&., the smallest relative change in !> any element of A or B that makes X(j) an exact solution)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (2*N) !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBInternal Parameters:\fP .RS 4 .PP .nf !> ITMAX is the maximum number of steps of iterative refinement\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB203\fP of file \fBzgbrfs\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.