.TH "SRC/zgbbrd.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zgbbrd.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzgbbrd\fP (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work, rwork, info)" .br .RI "\fBZGBBRD\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zgbbrd (character vect, integer m, integer n, integer ncc, integer kl, integer ku, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) d, double precision, dimension( * ) e, complex*16, dimension( ldq, * ) q, integer ldq, complex*16, dimension( ldpt, * ) pt, integer ldpt, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)" .PP \fBZGBBRD\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZGBBRD reduces a complex general m-by-n band matrix A to real upper !> bidiagonal form B by a unitary transformation: Q**H * A * P = B\&. !> !> The routine computes B, and optionally forms Q or P**H, or computes !> Q**H*C for a given matrix C\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIVECT\fP .PP .nf !> VECT is CHARACTER*1 !> Specifies whether or not the matrices Q and P**H are to be !> formed\&. !> = 'N': do not form Q or P**H; !> = 'Q': form Q only; !> = 'P': form P**H only; !> = 'B': form both\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINCC\fP .PP .nf !> NCC is INTEGER !> The number of columns of the matrix C\&. NCC >= 0\&. !> .fi .PP .br \fIKL\fP .PP .nf !> KL is INTEGER !> The number of subdiagonals of the matrix A\&. KL >= 0\&. !> .fi .PP .br \fIKU\fP .PP .nf !> KU is INTEGER !> The number of superdiagonals of the matrix A\&. KU >= 0\&. !> .fi .PP .br \fIAB\fP .PP .nf !> AB is COMPLEX*16 array, dimension (LDAB,N) !> On entry, the m-by-n band matrix A, stored in rows 1 to !> KL+KU+1\&. The j-th column of A is stored in the j-th column of !> the array AB as follows: !> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)\&. !> On exit, A is overwritten by values generated during the !> reduction\&. !> .fi .PP .br \fILDAB\fP .PP .nf !> LDAB is INTEGER !> The leading dimension of the array A\&. LDAB >= KL+KU+1\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (min(M,N)) !> The diagonal elements of the bidiagonal matrix B\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is DOUBLE PRECISION array, dimension (min(M,N)-1) !> The superdiagonal elements of the bidiagonal matrix B\&. !> .fi .PP .br \fIQ\fP .PP .nf !> Q is COMPLEX*16 array, dimension (LDQ,M) !> If VECT = 'Q' or 'B', the m-by-m unitary matrix Q\&. !> If VECT = 'N' or 'P', the array Q is not referenced\&. !> .fi .PP .br \fILDQ\fP .PP .nf !> LDQ is INTEGER !> The leading dimension of the array Q\&. !> LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise\&. !> .fi .PP .br \fIPT\fP .PP .nf !> PT is COMPLEX*16 array, dimension (LDPT,N) !> If VECT = 'P' or 'B', the n-by-n unitary matrix P'\&. !> If VECT = 'N' or 'Q', the array PT is not referenced\&. !> .fi .PP .br \fILDPT\fP .PP .nf !> LDPT is INTEGER !> The leading dimension of the array PT\&. !> LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is COMPLEX*16 array, dimension (LDC,NCC) !> On entry, an m-by-ncc matrix C\&. !> On exit, C is overwritten by Q**H*C\&. !> C is not referenced if NCC = 0\&. !> .fi .PP .br \fILDC\fP .PP .nf !> LDC is INTEGER !> The leading dimension of the array C\&. !> LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (max(M,N)) !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (max(M,N)) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit\&. !> < 0: if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB191\fP of file \fBzgbbrd\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.