.TH "TESTING/EIG/zdrvev.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/zdrvev.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzdrvev\fP (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, h, w, w1, vl, ldvl, vr, ldvr, lre, ldlre, result, work, nwork, rwork, iwork, info)" .br .RI "\fBZDRVEV\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zdrvev (integer nsizes, integer, dimension( * ) nn, integer ntypes, logical, dimension( * ) dotype, integer, dimension( 4 ) iseed, double precision thresh, integer nounit, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( lda, * ) h, complex*16, dimension( * ) w, complex*16, dimension( * ) w1, complex*16, dimension( ldvl, * ) vl, integer ldvl, complex*16, dimension( ldvr, * ) vr, integer ldvr, complex*16, dimension( ldlre, * ) lre, integer ldlre, double precision, dimension( 7 ) result, complex*16, dimension( * ) work, integer nwork, double precision, dimension( * ) rwork, integer, dimension( * ) iwork, integer info)" .PP \fBZDRVEV\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZDRVEV checks the nonsymmetric eigenvalue problem driver ZGEEV\&. !> !> When ZDRVEV is called, a number of matrix () and a !> number of matrix are specified\&. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the nonsymmetric eigenroutines\&. For each matrix, 7 !> tests will be performed: !> !> (1) | A * VR - VR * W | / ( n |A| ulp ) !> !> Here VR is the matrix of unit right eigenvectors\&. !> W is a diagonal matrix with diagonal entries W(j)\&. !> !> (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) !> !> Here VL is the matrix of unit left eigenvectors, A**H is the !> conjugate-transpose of A, and W is as above\&. !> !> (3) | |VR(i)| - 1 | / ulp and whether largest component real !> !> VR(i) denotes the i-th column of VR\&. !> !> (4) | |VL(i)| - 1 | / ulp and whether largest component real !> !> VL(i) denotes the i-th column of VL\&. !> !> (5) W(full) = W(partial) !> !> W(full) denotes the eigenvalues computed when both VR and VL !> are also computed, and W(partial) denotes the eigenvalues !> computed when only W, only W and VR, or only W and VL are !> computed\&. !> !> (6) VR(full) = VR(partial) !> !> VR(full) denotes the right eigenvectors computed when both VR !> and VL are computed, and VR(partial) denotes the result !> when only VR is computed\&. !> !> (7) VL(full) = VL(partial) !> !> VL(full) denotes the left eigenvectors computed when both VR !> and VL are also computed, and VL(partial) denotes the result !> when only VL is computed\&. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size\&. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is \&.TRUE\&., then matrix type will be generated\&. !> Currently, the list of possible types is: !> !> (1) The zero matrix\&. !> (2) The identity matrix\&. !> (3) A (transposed) Jordan block, with 1's on the diagonal\&. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, \&.\&.\&., ULP and random complex angles\&. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, \&.\&.\&., ULP and random complex angles\&. !> (6) A diagonal matrix with entries 1, ULP, \&.\&.\&., ULP !> and random complex angles\&. !> !> (7) Same as (4), but multiplied by a constant near !> the overflow threshold !> (8) Same as (4), but multiplied by a constant near !> the underflow threshold !> !> (9) A matrix of the form U' T U, where U is unitary and !> T has evenly spaced entries 1, \&.\&.\&., ULP with random complex !> angles on the diagonal and random O(1) entries in the upper !> triangle\&. !> !> (10) A matrix of the form U' T U, where U is unitary and !> T has geometrically spaced entries 1, \&.\&.\&., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle\&. !> !> (11) A matrix of the form U' T U, where U is unitary and !> T has entries 1, ULP,\&.\&.\&., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle\&. !> !> (12) A matrix of the form U' T U, where U is unitary and !> T has complex eigenvalues randomly chosen from !> ULP < |z| < 1 and random O(1) entries in the upper !> triangle\&. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, \&.\&.\&., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle\&. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, \&.\&.\&., ULP with random complex angles on the diagonal !> and random O(1) entries in the upper triangle\&. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,\&.\&.\&., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle\&. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has complex eigenvalues randomly chosen !> from ULP < |z| < 1 and random O(1) entries in the upper !> triangle\&. !> !> (17) Same as (16), but multiplied by a constant !> near the overflow threshold !> (18) Same as (16), but multiplied by a constant !> near the underflow threshold !> !> (19) Nonsymmetric matrix with random entries chosen from |z| < 1 !> If N is at least 4, all entries in first two rows and last !> row, and first column and last two columns are zero\&. !> (20) Same as (19), but multiplied by a constant !> near the overflow threshold !> (21) Same as (19), but multiplied by a constant !> near the underflow threshold !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fINSIZES\fP .PP .nf !> NSIZES is INTEGER !> The number of sizes of matrices to use\&. If it is zero, !> ZDRVEV does nothing\&. It must be at least zero\&. !> .fi .PP .br \fINN\fP .PP .nf !> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices\&. !> Zero values will be skipped\&. The values must be at least !> zero\&. !> .fi .PP .br \fINTYPES\fP .PP .nf !> NTYPES is INTEGER !> The number of elements in DOTYPE\&. If it is zero, ZDRVEV !> does nothing\&. It must be at least zero\&. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A\&. This !> is only useful if DOTYPE(1:MAXTYP) is \&.FALSE\&. and !> DOTYPE(MAXTYP+1) is \&.TRUE\&. \&. !> .fi .PP .br \fIDOTYPE\fP .PP .nf !> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is \&.TRUE\&., then for each size in NN a !> matrix of that size and of type j will be generated\&. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated\&. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored\&. !> .fi .PP .br \fIISEED\fP .PP .nf !> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator\&. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096\&. Also, ISEED(4) must !> be odd\&. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers\&. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZDRVEV to continue the same random number !> sequence\&. !> .fi .PP .br \fITHRESH\fP .PP .nf !> THRESH is DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH\&. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e\&.g\&., 10 or 100\&. In particular, !> it should not depend on the precision (single vs\&. double) !> or the size of the matrix\&. It must be at least zero\&. !> .fi .PP .br \fINOUNIT\fP .PP .nf !> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e\&.g\&., if a routine returns INFO not equal to 0\&.) !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA, max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed\&. On exit, A contains the last matrix actually used\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of A, and H\&. LDA must be at !> least 1 and at least max(NN)\&. !> .fi .PP .br \fIH\fP .PP .nf !> H is COMPLEX*16 array, dimension (LDA, max(NN)) !> Another copy of the test matrix A, modified by ZGEEV\&. !> .fi .PP .br \fIW\fP .PP .nf !> W is COMPLEX*16 array, dimension (max(NN)) !> The eigenvalues of A\&. On exit, W are the eigenvalues of !> the matrix in A\&. !> .fi .PP .br \fIW1\fP .PP .nf !> W1 is COMPLEX*16 array, dimension (max(NN)) !> Like W, this array contains the eigenvalues of A, !> but those computed when ZGEEV only computes a partial !> eigendecomposition, i\&.e\&. not the eigenvalues and left !> and right eigenvectors\&. !> .fi .PP .br \fIVL\fP .PP .nf !> VL is COMPLEX*16 array, dimension (LDVL, max(NN)) !> VL holds the computed left eigenvectors\&. !> .fi .PP .br \fILDVL\fP .PP .nf !> LDVL is INTEGER !> Leading dimension of VL\&. Must be at least max(1,max(NN))\&. !> .fi .PP .br \fIVR\fP .PP .nf !> VR is COMPLEX*16 array, dimension (LDVR, max(NN)) !> VR holds the computed right eigenvectors\&. !> .fi .PP .br \fILDVR\fP .PP .nf !> LDVR is INTEGER !> Leading dimension of VR\&. Must be at least max(1,max(NN))\&. !> .fi .PP .br \fILRE\fP .PP .nf !> LRE is COMPLEX*16 array, dimension (LDLRE, max(NN)) !> LRE holds the computed right or left eigenvectors\&. !> .fi .PP .br \fILDLRE\fP .PP .nf !> LDLRE is INTEGER !> Leading dimension of LRE\&. Must be at least max(1,max(NN))\&. !> .fi .PP .br \fIRESULT\fP .PP .nf !> RESULT is DOUBLE PRECISION array, dimension (7) !> The values computed by the seven tests described above\&. !> The values are currently limited to 1/ulp, to avoid !> overflow\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (NWORK) !> .fi .PP .br \fINWORK\fP .PP .nf !> NWORK is INTEGER !> The number of entries in WORK\&. This must be at least !> 5*NN(j)+2*NN(j)**2 for all j\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (2*max(NN)) !> .fi .PP .br \fIIWORK\fP .PP .nf !> IWORK is INTEGER array, dimension (max(NN)) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> If 0, then everything ran OK\&. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -6: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) )\&. !> -14: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) )\&. !> -16: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) )\&. !> -18: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) )\&. !> -21: NWORK too small\&. !> If ZLATMR, CLATMS, CLATME or ZGEEV returns an error code, !> the absolute value of it is returned\&. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> !> ZERO, ONE Real 0 and 1\&. !> MAXTYP The number of types defined\&. !> NMAX Largest value in NN\&. !> NERRS The number of tests which have exceeded THRESH !> COND, CONDS, !> IMODE Values to be passed to the matrix generators\&. !> ANORM Norm of A; passed to matrix generators\&. !> !> OVFL, UNFL Overflow and underflow thresholds\&. !> ULP, ULPINV Finest relative precision and its inverse\&. !> RTULP, RTULPI Square roots of the previous 4 values\&. !> !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type \&. !> KMODE(j) The MODE value to be passed to the matrix !> generator for type \&. !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Selectw whether CONDS is to be 1 or !> 1/sqrt(ulp)\&. (0 means irrelevant\&.) !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB387\fP of file \fBzdrvev\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.