INSTALL/test_zcomplexdiv.f(3) Library Functions Manual INSTALL/test_zcomplexdiv.f(3)

INSTALL/test_zcomplexdiv.f


program zdiv
zdiv tests the robustness and precision of the double complex division

zdiv tests the robustness and precision of the double complex division

Author

Weslley S. Pereira, University of Colorado Denver, U.S.
!>
!> Real values for test:
!> (1) x = 2**m, where m = MINEXPONENT-DIGITS, ..., MINEXPONENT-1.
!>     Mind that not all platforms might implement subnormal numbers.
!> (2) x = 2**m, where m = MINEXPONENT, ..., 0.
!> (3) x = OV, where OV is the overflow threshold. OV^2 overflows but the norm is OV.
!> (4) x = 2**m, where m = MAXEXPONENT-1, ..., 1.
!>
!> Tests:
!> (a) y = x + 0 * I, y/y = 1
!> (b) y = 0 + x * I, y/y = 1
!> (c) y = x + x * I, y/y = 1
!> (d) y1 = 0 + x * I, y2 = x + 0 * I, y1/y2 = I
!> (e) y1 = 0 + x * I, y2 = x + 0 * I, y2/y1 = -I
!> (f) y = x + x * I, y/conj(y) = I
!>
!> Special cases:
!>
!> (i) Inf inputs:
!>    (1) y = ( Inf + 0   * I)
!>    (2) y = ( 0   + Inf * I)
!>    (3) y = (-Inf + 0   * I)
!>    (4) y = ( 0   - Inf * I)
!>    (5) y = ( Inf + Inf * I)
!> Tests:
!>    (a) 0 / y is either 0 or NaN.
!>    (b) 1 / y is either 0 or NaN.
!>    (c) y / y is NaN.
!>
!> (n) NaN inputs:
!>    (1) y = (NaN + 0   * I)
!>    (2) y = (0   + NaN * I)
!>    (3) y = (NaN + NaN * I)
!> Tests:
!>    (a) 0 / y is NaN.
!>    (b) 1 / y is NaN.
!>    (c) y / y is NaN.
!>
!> 

Definition at line 57 of file test_zcomplexdiv.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK