INSTALL/test_zcomplexdiv.f(3) | Library Functions Manual | INSTALL/test_zcomplexdiv.f(3) |
NAME
INSTALL/test_zcomplexdiv.f
SYNOPSIS
Functions/Subroutines
program zdiv
zdiv tests the robustness and precision of the double complex division
Function/Subroutine Documentation
program zdiv
zdiv tests the robustness and precision of the double complex division
Author
Weslley S. Pereira, University of Colorado Denver, U.S.
!> !> Real values for test: !> (1) x = 2**m, where m = MINEXPONENT-DIGITS, ..., MINEXPONENT-1. !> Mind that not all platforms might implement subnormal numbers. !> (2) x = 2**m, where m = MINEXPONENT, ..., 0. !> (3) x = OV, where OV is the overflow threshold. OV^2 overflows but the norm is OV. !> (4) x = 2**m, where m = MAXEXPONENT-1, ..., 1. !> !> Tests: !> (a) y = x + 0 * I, y/y = 1 !> (b) y = 0 + x * I, y/y = 1 !> (c) y = x + x * I, y/y = 1 !> (d) y1 = 0 + x * I, y2 = x + 0 * I, y1/y2 = I !> (e) y1 = 0 + x * I, y2 = x + 0 * I, y2/y1 = -I !> (f) y = x + x * I, y/conj(y) = I !> !> Special cases: !> !> (i) Inf inputs: !> (1) y = ( Inf + 0 * I) !> (2) y = ( 0 + Inf * I) !> (3) y = (-Inf + 0 * I) !> (4) y = ( 0 - Inf * I) !> (5) y = ( Inf + Inf * I) !> Tests: !> (a) 0 / y is either 0 or NaN. !> (b) 1 / y is either 0 or NaN. !> (c) y / y is NaN. !> !> (n) NaN inputs: !> (1) y = (NaN + 0 * I) !> (2) y = (0 + NaN * I) !> (3) y = (NaN + NaN * I) !> Tests: !> (a) 0 / y is NaN. !> (b) 1 / y is NaN. !> (c) y / y is NaN. !> !>
Definition at line 57 of file test_zcomplexdiv.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |