.TH "TESTING/EIG/zbdt03.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/zbdt03.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzbdt03\fP (uplo, n, kd, d, e, u, ldu, s, vt, ldvt, work, resid)" .br .RI "\fBZBDT03\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zbdt03 (character uplo, integer n, integer kd, double precision, dimension( * ) d, double precision, dimension( * ) e, complex*16, dimension( ldu, * ) u, integer ldu, double precision, dimension( * ) s, complex*16, dimension( ldvt, * ) vt, integer ldvt, complex*16, dimension( * ) work, double precision resid)" .PP \fBZBDT03\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZBDT03 reconstructs a bidiagonal matrix B from its SVD: S = U' * B * V where U and V are orthogonal matrices and S is diagonal\&. The test ratio to test the singular value decomposition is RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS ) where VT = V' and EPS is the machine precision\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the matrix B is upper or lower bidiagonal\&. = 'U': Upper bidiagonal = 'L': Lower bidiagonal .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix B\&. .fi .PP .br \fIKD\fP .PP .nf KD is INTEGER The bandwidth of the bidiagonal matrix B\&. If KD = 1, the matrix B is bidiagonal, and if KD = 0, B is diagonal and E is not referenced\&. If KD is greater than 1, it is assumed to be 1, and if KD is less than 0, it is assumed to be 0\&. .fi .PP .br \fID\fP .PP .nf D is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the bidiagonal matrix B\&. .fi .PP .br \fIE\fP .PP .nf E is DOUBLE PRECISION array, dimension (N-1) The (n-1) superdiagonal elements of the bidiagonal matrix B if UPLO = 'U', or the (n-1) subdiagonal elements of B if UPLO = 'L'\&. .fi .PP .br \fIU\fP .PP .nf U is COMPLEX*16 array, dimension (LDU,N) The n by n orthogonal matrix U in the reduction B = U'*A*P\&. .fi .PP .br \fILDU\fP .PP .nf LDU is INTEGER The leading dimension of the array U\&. LDU >= max(1,N) .fi .PP .br \fIS\fP .PP .nf S is DOUBLE PRECISION array, dimension (N) The singular values from the SVD of B, sorted in decreasing order\&. .fi .PP .br \fIVT\fP .PP .nf VT is COMPLEX*16 array, dimension (LDVT,N) The n by n orthogonal matrix V' in the reduction B = U * S * V'\&. .fi .PP .br \fILDVT\fP .PP .nf LDVT is INTEGER The leading dimension of the array VT\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (2*N) .fi .PP .br \fIRESID\fP .PP .nf RESID is DOUBLE PRECISION The test ratio: norm(B - U * S * V') / ( n * norm(A) * EPS ) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB133\fP of file \fBzbdt03\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.