.TH "ungl2" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME ungl2 \- {un,or}gl2: generate explicit Q, level 2, step in unglq .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcungl2\fP (m, n, k, a, lda, tau, work, info)" .br .RI "\fBCUNGL2\fP generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (unblocked algorithm)\&. " .ti -1c .RI "subroutine \fBdorgl2\fP (m, n, k, a, lda, tau, work, info)" .br .RI "\fBDORGL2\fP " .ti -1c .RI "subroutine \fBsorgl2\fP (m, n, k, a, lda, tau, work, info)" .br .RI "\fBSORGL2\fP " .ti -1c .RI "subroutine \fBzungl2\fP (m, n, k, a, lda, tau, work, info)" .br .RI "\fBZUNGL2\fP generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (unblocked algorithm)\&. " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cungl2 (integer m, integer n, integer k, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info)" .PP \fBCUNGL2\fP generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (unblocked algorithm)\&. .PP \fBPurpose:\fP .RS 4 .PP .nf CUNGL2 generates an m-by-n complex matrix Q with orthonormal rows, which is defined as the first m rows of a product of k elementary reflectors of order n Q = H(k)**H \&. \&. \&. H(2)**H H(1)**H as returned by CGELQF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix Q\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix Q\&. N >= M\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The number of elementary reflectors whose product defines the matrix Q\&. M >= K >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,\&.\&.\&.,k, as returned by CGELQF in the first k rows of its array argument A\&. On exit, the m by n matrix Q\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The first dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGELQF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (M) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB112\fP of file \fBcungl2\&.f\fP\&. .SS "subroutine dorgl2 (integer m, integer n, integer k, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info)" .PP \fBDORGL2\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DORGL2 generates an m by n real matrix Q with orthonormal rows, which is defined as the first m rows of a product of k elementary reflectors of order n Q = H(k) \&. \&. \&. H(2) H(1) as returned by DGELQF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix Q\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix Q\&. N >= M\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The number of elementary reflectors whose product defines the matrix Q\&. M >= K >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,\&.\&.\&.,k, as returned by DGELQF in the first k rows of its array argument A\&. On exit, the m-by-n matrix Q\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The first dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGELQF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (M) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB112\fP of file \fBdorgl2\&.f\fP\&. .SS "subroutine sorgl2 (integer m, integer n, integer k, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer info)" .PP \fBSORGL2\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SORGL2 generates an m by n real matrix Q with orthonormal rows, which is defined as the first m rows of a product of k elementary reflectors of order n Q = H(k) \&. \&. \&. H(2) H(1) as returned by SGELQF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix Q\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix Q\&. N >= M\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The number of elementary reflectors whose product defines the matrix Q\&. M >= K >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) On entry, the i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,\&.\&.\&.,k, as returned by SGELQF in the first k rows of its array argument A\&. On exit, the m-by-n matrix Q\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The first dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is REAL array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SGELQF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (M) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB112\fP of file \fBsorgl2\&.f\fP\&. .SS "subroutine zungl2 (integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)" .PP \fBZUNGL2\fP generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (unblocked algorithm)\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZUNGL2 generates an m-by-n complex matrix Q with orthonormal rows, which is defined as the first m rows of a product of k elementary reflectors of order n Q = H(k)**H \&. \&. \&. H(2)**H H(1)**H as returned by ZGELQF\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix Q\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix Q\&. N >= M\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The number of elementary reflectors whose product defines the matrix Q\&. M >= K >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,\&.\&.\&.,k, as returned by ZGELQF in the first k rows of its array argument A\&. On exit, the m by n matrix Q\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The first dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX*16 array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ZGELQF\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (M) .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB112\fP of file \fBzungl2\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.