.TH "unghr" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME unghr \- {un,or}ghr: generate Q from gehrd .SH SYNOPSIS .br .PP .SS "Functions" .in +1c .ti -1c .RI "subroutine \fBcunghr\fP (n, ilo, ihi, a, lda, tau, work, lwork, info)" .br .RI "\fBCUNGHR\fP " .ti -1c .RI "subroutine \fBdorghr\fP (n, ilo, ihi, a, lda, tau, work, lwork, info)" .br .RI "\fBDORGHR\fP " .ti -1c .RI "subroutine \fBsorghr\fP (n, ilo, ihi, a, lda, tau, work, lwork, info)" .br .RI "\fBSORGHR\fP " .ti -1c .RI "subroutine \fBzunghr\fP (n, ilo, ihi, a, lda, tau, work, lwork, info)" .br .RI "\fBZUNGHR\fP " .in -1c .SH "Detailed Description" .PP .SH "Function Documentation" .PP .SS "subroutine cunghr (integer n, integer ilo, integer ihi, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer lwork, integer info)" .PP \fBCUNGHR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf CUNGHR generates a complex unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by CGEHRD: Q = H(ilo) H(ilo+1) \&. \&. \&. H(ihi-1)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The order of the matrix Q\&. N >= 0\&. .fi .PP .br \fIILO\fP .PP .nf ILO is INTEGER .fi .PP .br \fIIHI\fP .PP .nf IHI is INTEGER ILO and IHI must have the same values as in the previous call of CGEHRD\&. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi)\&. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by CGEHRD\&. On exit, the N-by-N unitary matrix Q\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGEHRD\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= IHI-ILO\&. For optimum performance LWORK >= (IHI-ILO)*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB125\fP of file \fBcunghr\&.f\fP\&. .SS "subroutine dorghr (integer n, integer ilo, integer ihi, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer lwork, integer info)" .PP \fBDORGHR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf DORGHR generates a real orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by DGEHRD: Q = H(ilo) H(ilo+1) \&. \&. \&. H(ihi-1)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The order of the matrix Q\&. N >= 0\&. .fi .PP .br \fIILO\fP .PP .nf ILO is INTEGER .fi .PP .br \fIIHI\fP .PP .nf IHI is INTEGER ILO and IHI must have the same values as in the previous call of DGEHRD\&. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi)\&. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0\&. .fi .PP .br \fIA\fP .PP .nf A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by DGEHRD\&. On exit, the N-by-N orthogonal matrix Q\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is DOUBLE PRECISION array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEHRD\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= IHI-ILO\&. For optimum performance LWORK >= (IHI-ILO)*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB125\fP of file \fBdorghr\&.f\fP\&. .SS "subroutine sorghr (integer n, integer ilo, integer ihi, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info)" .PP \fBSORGHR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf SORGHR generates a real orthogonal matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by SGEHRD: Q = H(ilo) H(ilo+1) \&. \&. \&. H(ihi-1)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The order of the matrix Q\&. N >= 0\&. .fi .PP .br \fIILO\fP .PP .nf ILO is INTEGER .fi .PP .br \fIIHI\fP .PP .nf IHI is INTEGER ILO and IHI must have the same values as in the previous call of SGEHRD\&. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi)\&. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0\&. .fi .PP .br \fIA\fP .PP .nf A is REAL array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by SGEHRD\&. On exit, the N-by-N orthogonal matrix Q\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is REAL array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SGEHRD\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= IHI-ILO\&. For optimum performance LWORK >= (IHI-ILO)*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB125\fP of file \fBsorghr\&.f\fP\&. .SS "subroutine zunghr (integer n, integer ilo, integer ihi, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer lwork, integer info)" .PP \fBZUNGHR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZUNGHR generates a complex unitary matrix Q which is defined as the product of IHI-ILO elementary reflectors of order N, as returned by ZGEHRD: Q = H(ilo) H(ilo+1) \&. \&. \&. H(ihi-1)\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The order of the matrix Q\&. N >= 0\&. .fi .PP .br \fIILO\fP .PP .nf ILO is INTEGER .fi .PP .br \fIIHI\fP .PP .nf IHI is INTEGER ILO and IHI must have the same values as in the previous call of ZGEHRD\&. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi)\&. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the vectors which define the elementary reflectors, as returned by ZGEHRD\&. On exit, the N-by-N unitary matrix Q\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX*16 array, dimension (N-1) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ZGEHRD\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. .fi .PP .br \fILWORK\fP .PP .nf LWORK is INTEGER The dimension of the array WORK\&. LWORK >= IHI-ILO\&. For optimum performance LWORK >= (IHI-ILO)*NB, where NB is the optimal blocksize\&. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB125\fP of file \fBzunghr\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.